radames's picture
ex
f862848
import os
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
from PIL import Image, ImageOps, ImageSequence
from typing import List
from pathlib import Path
from huggingface_hub import snapshot_download, hf_hub_download
def tensor_to_pil(images: torch.Tensor | List[torch.Tensor]) -> List[Image.Image]:
if not isinstance(images, list):
images = [images]
imgs = []
for image in images:
i = 255.0 * image.cpu().numpy()
img = Image.fromarray(np.clip(np.squeeze(i), 0, 255).astype(np.uint8))
imgs.append(img)
return imgs
def pad_image(input_image, background_color=(0, 0, 0)):
w, h = input_image.size
pad_w = (64 - w % 64) % 64
pad_h = (64 - h % 64) % 64
new_size = (w + pad_w, h + pad_h)
im_padded = Image.new(input_image.mode, new_size, background_color)
im_padded.paste(input_image, (pad_w // 2, pad_h // 2))
if im_padded.size[0] == im_padded.size[1]:
return im_padded
elif im_padded.size[0] > im_padded.size[1]:
new_size = (im_padded.size[0], im_padded.size[0])
new_image = Image.new(im_padded.mode, new_size, background_color)
new_image.paste(im_padded, (0, (new_size[1] - im_padded.size[1]) // 2))
return new_image
else:
new_size = (im_padded.size[1], im_padded.size[1])
new_image = Image.new(im_padded.mode, new_size, background_color)
new_image.paste(im_padded, ((new_size[0] - im_padded.size[0]) // 2, 0))
return new_image
def pil_to_tensor(image: Image.Image) -> tuple[torch.Tensor, torch.Tensor]:
output_images = []
output_masks = []
for i in ImageSequence.Iterator(image):
i = ImageOps.exif_transpose(i)
if i.mode == "I":
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if "A" in i.getbands():
mask = np.array(i.getchannel("A")).astype(np.float32) / 255.0
mask = 1.0 - torch.from_numpy(mask)
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
output_images.append(image)
output_masks.append(mask.unsqueeze(0))
if len(output_images) > 1:
output_image = torch.cat(output_images, dim=0)
output_mask = torch.cat(output_masks, dim=0)
else:
output_image = output_images[0]
output_mask = output_masks[0]
return (output_image, output_mask)
def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor:
if len(im.shape) < 3:
im = im[:, :, np.newaxis]
# orig_im_size=im.shape[0:2]
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2, 0, 1)
im_tensor = F.interpolate(
torch.unsqueeze(im_tensor, 0), size=model_input_size, mode="bilinear"
).type(torch.uint8)
image = torch.divide(im_tensor, 255.0)
image = normalize(image, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
return image
def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray:
result = torch.squeeze(F.interpolate(result, size=im_size, mode="bilinear"), 0)
ma = torch.max(result)
mi = torch.min(result)
result = (result - mi) / (ma - mi)
im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8)
im_array = np.squeeze(im_array)
return im_array
def downloadModels():
MODEL_PATH = snapshot_download(
repo_id="RunDiffusion/Juggernaut-XL-v6", allow_patterns="*.safetensors"
)
LAYERS_PATH = snapshot_download(
repo_id="LayerDiffusion/layerdiffusion-v1", allow_patterns="*.safetensors"
)
for file in Path(LAYERS_PATH).glob("*.safetensors"):
target_path = Path(f"./ComfyUI/models/layer_model/{file.name}")
if not target_path.exists():
os.symlink(file, target_path)
for model in Path(MODEL_PATH).glob("*.safetensors"):
model_target_path = Path(f"./ComfyUI/models/checkpoints/{model.name}")
if not model_target_path.exists():
os.symlink(model, model_target_path)
examples = [
[
"A very cute monster cat on a glass bottle",
"ugly distorted image, low quality, text, bad, not good ,watermark",
None,
False,
None,
1231231,
5,
],
[
"A picture from above captures a beautiful, small toucan bird flying in the sky.",
"ugly distorted image, low quality, text, bad, not good ,watermark",
"./examples/bg.png",
False,
"SDXL, Background",
1234144,
8,
],
[
"a photo a men surrounded by a crowd of people in a circle",
"ugly distorted image, low quality, text, bad, not good ,watermark",
"./examples/lecun.png",
True,
"SDXL, Foreground",
123123,
10,
],
[
"An image of a galaxy",
"ugly distorted image, low quality, text, bad, not good ,watermark",
"./examples/julien.png",
True,
"SDXL, Foreground",
123123,
10,
],
[
"a men jumping on swiming pool full of people",
"ugly distorted image, low quality, text, bad, not good ,watermark",
"./examples/old_jump.png",
False,
"SDXL, Foreground",
5350795678007195000,
10,
],
[
"a cute cat flying over Manhattan time square",
"ugly distorted image, low quality, text, bad, not good ,watermark",
"./examples/cat.png",
True,
"SDXL, Foreground",
123123,
10,
],
]