Spaces:
Building
on
A10G
Building
on
A10G
import sys | |
import os | |
import torch | |
from PIL import Image, ImageSequence, ImageOps | |
from typing import List | |
import numpy as np | |
sys.path.append(os.path.dirname("./ComfyUI/")) | |
from ComfyUI.nodes import ( | |
CheckpointLoaderSimple, | |
VAEDecode, | |
VAEEncode, | |
KSampler, | |
EmptyLatentImage, | |
CLIPTextEncode, | |
) | |
from ComfyUI.comfy_extras.nodes_compositing import JoinImageWithAlpha | |
from ComfyUI.comfy_extras.nodes_mask import InvertMask, MaskToImage | |
from ComfyUI.comfy import samplers | |
from ComfyUI.custom_nodes.layerdiffuse.layered_diffusion import ( | |
LayeredDiffusionFG, | |
LayeredDiffusionDecode, | |
LayeredDiffusionCond, | |
) | |
import gradio as gr | |
with torch.inference_mode(): | |
ckpt_load_checkpoint = CheckpointLoaderSimple().load_checkpoint | |
ckpt = ckpt_load_checkpoint(ckpt_name="juggernautXL_v8Rundiffusion.safetensors") | |
cliptextencode = CLIPTextEncode().encode | |
emptylatentimage_generate = EmptyLatentImage().generate | |
ksampler_sample = KSampler().sample | |
vae_decode = VAEDecode().decode | |
vae_encode = VAEEncode().encode | |
ld_fg_apply_layered_diffusion = LayeredDiffusionFG().apply_layered_diffusion | |
ld_cond_apply_layered_diffusion = LayeredDiffusionCond().apply_layered_diffusion | |
ld_decode = LayeredDiffusionDecode().decode | |
mask_to_image = MaskToImage().mask_to_image | |
invert_mask = InvertMask().invert | |
join_image_with_alpha = JoinImageWithAlpha().join_image_with_alpha | |
def tensor_to_pil(images: torch.Tensor | List[torch.Tensor]) -> List[Image.Image]: | |
if not isinstance(images, list): | |
images = [images] | |
imgs = [] | |
for image in images: | |
i = 255.0 * image.cpu().numpy() | |
img = Image.fromarray(np.clip(np.squeeze(i), 0, 255).astype(np.uint8)) | |
imgs.append(img) | |
return imgs | |
def pad_image(input_image): | |
pad_w, pad_h = ( | |
np.max(((2, 2), np.ceil(np.array(input_image.size) / 64).astype(int)), axis=0) | |
* 64 | |
- input_image.size | |
) | |
im_padded = Image.fromarray( | |
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode="edge") | |
) | |
w, h = im_padded.size | |
if w == h: | |
return im_padded | |
elif w > h: | |
new_image = Image.new(im_padded.mode, (w, w), (0, 0, 0)) | |
new_image.paste(im_padded, (0, (w - h) // 2)) | |
return new_image | |
else: | |
new_image = Image.new(im_padded.mode, (h, h), (0, 0, 0)) | |
new_image.paste(im_padded, ((h - w) // 2, 0)) | |
return new_image | |
def pil_to_tensor(image: Image.Image) -> tuple[torch.Tensor, torch.Tensor]: | |
output_images = [] | |
output_masks = [] | |
for i in ImageSequence.Iterator(image): | |
i = ImageOps.exif_transpose(i) | |
if i.mode == "I": | |
i = i.point(lambda i: i * (1 / 255)) | |
image = i.convert("RGB") | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = torch.from_numpy(image)[None,] | |
if "A" in i.getbands(): | |
mask = np.array(i.getchannel("A")).astype(np.float32) / 255.0 | |
mask = 1.0 - torch.from_numpy(mask) | |
else: | |
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu") | |
output_images.append(image) | |
output_masks.append(mask.unsqueeze(0)) | |
if len(output_images) > 1: | |
output_image = torch.cat(output_images, dim=0) | |
output_mask = torch.cat(output_masks, dim=0) | |
else: | |
output_image = output_images[0] | |
output_mask = output_masks[0] | |
return (output_image, output_mask) | |
def predict( | |
prompt: str, | |
negative_prompt: str, | |
input_image: Image.Image | None, | |
cond_mode: str, | |
seed: int, | |
sampler_name: str, | |
scheduler: str, | |
steps: int, | |
cfg: float, | |
denoise: float, | |
): | |
with torch.inference_mode(): | |
cliptextencode_prompt = cliptextencode( | |
text=prompt, | |
clip=ckpt[1], | |
) | |
cliptextencode_negative_prompt = cliptextencode( | |
text=negative_prompt, | |
clip=ckpt[1], | |
) | |
emptylatentimage_sample = emptylatentimage_generate( | |
width=1024, height=1024, batch_size=1 | |
) | |
if input_image is not None: | |
img_tensor = pil_to_tensor(pad_image(input_image).resize((1024, 1024))) | |
img_latent = vae_encode(pixels=img_tensor[0], vae=ckpt[2]) | |
layereddiffusionapply_sample = ld_cond_apply_layered_diffusion( | |
config=cond_mode, | |
weight=1, | |
model=ckpt[0], | |
cond=cliptextencode_prompt[0], | |
uncond=cliptextencode_negative_prompt[0], | |
latent=img_latent[0], | |
) | |
ksampler = ksampler_sample( | |
steps=steps, | |
cfg=cfg, | |
sampler_name=sampler_name, | |
scheduler=scheduler, | |
seed=seed, | |
model=layereddiffusionapply_sample[0], | |
positive=layereddiffusionapply_sample[1], | |
negative=layereddiffusionapply_sample[2], | |
latent_image=emptylatentimage_sample[0], | |
denoise=denoise, | |
) | |
vaedecode_sample = vae_decode( | |
samples=ksampler[0], | |
vae=ckpt[2], | |
) | |
layereddiffusiondecode_sample = ld_decode( | |
sd_version="SDXL", | |
sub_batch_size=16, | |
samples=ksampler[0], | |
images=vaedecode_sample[0], | |
) | |
rgb_img = tensor_to_pil(vaedecode_sample[0]) | |
return flatten([rgb_img]) | |
else: | |
layereddiffusionapply_sample = ld_fg_apply_layered_diffusion( | |
config="SDXL, Conv Injection", weight=1, model=ckpt[0] | |
) | |
ksampler = ksampler_sample( | |
steps=steps, | |
cfg=cfg, | |
sampler_name=sampler_name, | |
scheduler=scheduler, | |
seed=seed, | |
model=layereddiffusionapply_sample[0], | |
positive=cliptextencode_prompt[0], | |
negative=cliptextencode_negative_prompt[0], | |
latent_image=emptylatentimage_sample[0], | |
denoise=denoise, | |
) | |
vaedecode_sample = vae_decode( | |
samples=ksampler[0], | |
vae=ckpt[2], | |
) | |
layereddiffusiondecode_sample = ld_decode( | |
sd_version="SDXL", | |
sub_batch_size=16, | |
samples=ksampler[0], | |
images=vaedecode_sample[0], | |
) | |
mask = mask_to_image(mask=layereddiffusiondecode_sample[1]) | |
ld_image = tensor_to_pil(layereddiffusiondecode_sample[0][0]) | |
inverted_mask = invert_mask(mask=layereddiffusiondecode_sample[1]) | |
rgba_img = join_image_with_alpha( | |
image=layereddiffusiondecode_sample[0], alpha=inverted_mask[0] | |
) | |
rgba_img = tensor_to_pil(rgba_img[0]) | |
mask = tensor_to_pil(mask[0]) | |
rgb_img = tensor_to_pil(vaedecode_sample[0]) | |
return flatten([rgba_img, mask, rgb_img, ld_image]) | |
examples = [["An old men sit on a chair looking at the sky"]] | |
def flatten(l: List[List[any]]) -> List[any]: | |
return [item for sublist in l for item in sublist] | |
def predict_examples(prompt, negative_prompt): | |
return predict( | |
prompt, negative_prompt, None, None, 0, "euler", "normal", 20, 8.0, 1.0 | |
) | |
css = """ | |
.gradio-container{ | |
max-width: 60rem; | |
} | |
""" | |
with gr.Blocks(css=css) as blocks: | |
gr.Markdown("""# LayerDiffuse (unofficial) | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Text(label="Prompt") | |
negative_prompt = gr.Text(label="Negative Prompt") | |
button = gr.Button("Generate") | |
with gr.Accordion(open=False, label="Input Images (Optional)"): | |
cond_mode = gr.Radio( | |
value="SDXL, Foreground", | |
choices=["SDXL, Foreground", "SDXL, Background"], | |
info="Whether to use input image as foreground or background", | |
) | |
input_image = gr.Image(label="Input Image", type="pil") | |
with gr.Accordion(open=False, label="Advanced Options"): | |
seed = gr.Slider( | |
label="Seed", | |
value=0, | |
minimum=-1, | |
maximum=0xFFFFFFFFFFFFFFFF, | |
step=1, | |
randomize=True, | |
) | |
sampler_name = gr.Dropdown( | |
choices=samplers.KSampler.SAMPLERS, | |
label="Sampler Name", | |
value=samplers.KSampler.SAMPLERS[0], | |
) | |
scheduler = gr.Dropdown( | |
choices=samplers.KSampler.SCHEDULERS, | |
label="Scheduler", | |
value=samplers.KSampler.SCHEDULERS[0], | |
) | |
steps = gr.Number( | |
label="Steps", value=20, minimum=1, maximum=10000, step=1 | |
) | |
cfg = gr.Number( | |
label="CFG", value=8.0, minimum=0.0, maximum=100.0, step=0.1 | |
) | |
denoise = gr.Number( | |
label="Denoise", value=1.0, minimum=0.0, maximum=1.0, step=0.01 | |
) | |
with gr.Column(scale=1.8): | |
gallery = gr.Gallery( | |
columns=[2], rows=[2], object_fit="contain", height="unset" | |
) | |
inputs = [ | |
prompt, | |
negative_prompt, | |
input_image, | |
cond_mode, | |
seed, | |
sampler_name, | |
scheduler, | |
steps, | |
cfg, | |
denoise, | |
] | |
outputs = [gallery] | |
gr.Examples( | |
fn=predict_examples, | |
examples=examples, | |
inputs=[prompt, negative_prompt], | |
outputs=outputs, | |
cache_examples=False, | |
) | |
button.click(fn=predict, inputs=inputs, outputs=outputs) | |
if __name__ == "__main__": | |
blocks.launch() | |