import gradio as gr from transformers import BartForSequenceClassification, BartTokenizer # model = pipeline("text-generation") # following https://joeddav.github.io/blog/2020/05/29/ZSL.html tokenizer_bart = BartTokenizer.from_pretrained('facebook/bart-large-mnli') model_bart_sq = BartForSequenceClassification.from_pretrained('facebook/bart-large-mnli') title="Stance Detection using Zero Shot" description="Welcome to the side where the grass is greener. This is a simple tool which was created with an aim to stance towards a given entity in a sentence. However, this is not the only use case of it!" def zs(premise,hypothesis): input_ids = tokenizer_bart.encode(premise, hypothesis, return_tensors='pt') logits = model_bart_sq(input_ids)[0] # entail_contradiction_logits = logits[:,[0,1,2]] entail_contradiction_logits = logits[:,[0,2]] probs = entail_contradiction_logits.softmax(dim=1) contra_prob = round(probs[:,0].item(),4) # neut_prob = round(probs[:,1].item(),4) entail_prob = round(probs[:,1].item(),4) # return contra_prob, neut_prob, entail_prob return contra_prob, entail_prob # gr.Interface(fn=zs, inputs=["text", "text"], outputs=["text","text","text"]).launch() with gr.Blocks() as demo: gr.Markdown(f" # {title}") gr.Markdown(f" ## {description}") with gr.Row(): premise = gr.Textbox(label="Premise",placeholder = "Roger Federer is an amazing tennis player.") hypothesis = gr.Textbox(label="Hypothesis", placeholder = "The stance to Roger Federer is positive.") with gr.Row(): greet_btn = gr.Button("Compute") with gr.Row(): entailment = gr.Textbox(label="Entailment Probability") contradiction = gr.Textbox(label="Contradiction Probability") # neutral = gr.Textbox(label="Neutral Probability") # greet_btn.click(fn=zs, inputs=[premise,hypothesis], outputs=[contradiction,neutral,entailment]) greet_btn.click(fn=zs, inputs=[premise,hypothesis], outputs=[contradiction,entailment]) gr.Examples( fn = zs, examples = [["Roger Federer is an amazing tennis player.","The stance to Roger Federer is positive."]], inputs = [premise,hypothesis] ) demo.launch()