import gradio as gr from transformers import BartForSequenceClassification, BartTokenizer # model = pipeline("text-generation") # following https://joeddav.github.io/blog/2020/05/29/ZSL.html tokenizer_bart = BartTokenizer.from_pretrained('facebook/bart-large-mnli') model_bart_sq = BartForSequenceClassification.from_pretrained('facebook/bart-large-mnli') # def predict(prompt): # completion = model(prompt)[0]["generated_text"] # return completion def zs(premise,hypothesis): input_ids = tokenizer_bart.encode(premise, hypothesis, return_tensors='pt') logits = model_bart_sq(input_ids)[0] entail_contradiction_logits = logits[:,[0,2]] probs = entail_contradiction_logits.softmax(dim=1) true_prob = probs[:,1].item() * 100 return true_prob gr.Interface(fn=zs, inputs=["text", "text"], outputs="text").launch()