Francisco Santos commited on
Commit
b55b7f0
1 Parent(s): aafc193

input handling

Browse files
Files changed (3) hide show
  1. app.py +249 -31
  2. app_files.py +173 -0
  3. output.html +31 -0
app.py CHANGED
@@ -5,16 +5,137 @@ import time
5
  import os
6
  from transformers import AutoTokenizer, pipeline
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  models = {
9
  "model_n1": "sileod/deberta-v3-base-tasksource-nli",
10
  # "model_n2": "roberta-large-mnli",
11
  # "model_n3": "facebook/bart-large-mnli",
12
  # "model_n4": "cross-encoder/nli-deberta-v3-xsmall"
13
  }
14
- def open_html(file):
15
  with open(file.name, "r") as f:
16
  content = f.read()
17
- return content
18
 
19
  def find_form_fields(html_content):
20
 
@@ -66,7 +187,7 @@ def classify_lines(text, candidate_labels, model_name):
66
  execution_time = end_time - start_time # Calculate execution time
67
  return classified_lines, execution_time
68
 
69
- def classify_lines_json(text, json_content, candidate_labels, model_name, output_file_path):
70
  start_time = time.time() # Start measuring time
71
  classifier = pipeline('zero-shot-classification', model=model_name)
72
 
@@ -79,17 +200,114 @@ def classify_lines_json(text, json_content, candidate_labels, model_name, output
79
  # Open the output.html file in write mode
80
  output_content = []
81
 
82
- with open(output_file_path, 'w') as output_file:
83
- for line in lines:
84
-
85
- if line.strip() and (line.strip().startswith("<input") or line.strip().startswith("<select") )and 'hidden' not in line.lower():
86
- # Skip empty lines, classify lines starting with "<input", and exclude lines with 'hidden'
87
- results = classifier(line, candidate_labels=candidate_labels)
88
- top_classifications = results['labels'][:2] # Get the top two classifications
89
- top_scores = results['scores'][:2] # Get the top two scores
90
- line = line + f"<!-- Input: {json_content[top_classifications[0]]} with this certainty: {top_scores[0]} -->"
91
- output_file.write(line + '\n')
92
- output_content.append(line + '\n')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
 
95
  end_time = time.time() # Stop measuring time
@@ -129,38 +347,38 @@ def retrieve_fields_from_file(file_path):
129
 
130
 
131
  def process_files(html_file, json_file):
132
- # This function will process the files.
133
- # Replace this with your own logic.
134
- output_file_path = "./output.html"
135
- # Open and read the files
136
- html_content = open_html(html_file)
137
- #print(html_content)
138
- html_inputs = find_form_fields(html_content)
139
-
140
- json_content = retrieve_fields_from_file(json_file)
141
  #Classificar os inputs do json para ver em que tipo de input ["text", "radio", "checkbox", "button", "date"]
142
 
143
  # Classify lines and measure execution time
144
  for model_name in models.values():
145
  tokenizer = AutoTokenizer.from_pretrained(model_name)
146
 
147
- html_classified_lines, html_execution_time = classify_lines(html_inputs, ["text", "radio", "checkbox", "button", "date"], model_name)
148
 
149
- json_classified_lines, json_execution_time = classify_lines_json(html_content, json_content, list(json_content.keys()), model_name, output_file_path)
150
 
151
  # print(str(html_execution_time) + " - " + str(html_classified_lines))
152
  # print(str(json_execution_time) + " - " + str(json_classified_lines))
153
- #FILL HERE
154
-
155
  #print(type(json_classified_lines))
156
- # Assuming your function returns the processed HTML
157
- #json_classified_lines
158
  #return '\n'.join(map(str, html_classified_lines))
159
  return '\n'.join(map(str, json_classified_lines))
160
 
161
  iface = gr.Interface(fn=process_files,
162
- inputs=[gr.inputs.File(label="Upload HTML File"), gr.inputs.File(label="Upload JSON File")],
163
- outputs="text")
 
 
 
 
 
164
 
165
 
166
  iface.launch()
 
5
  import os
6
  from transformers import AutoTokenizer, pipeline
7
 
8
+ example1 = '''<!DOCTYPE html>
9
+ <html>
10
+ <head>
11
+ <meta charset="UTF-8">
12
+ <title>Contact Form</title>
13
+ </head>
14
+ <body>
15
+ <h1>Contact Form</h1>
16
+ <form action="/submit-form" method="POST">
17
+ <label for="name">Name:</label>
18
+ <input type="text" id="name" name="name" required>
19
+ <br>
20
+ <label for="email">Email:</label>
21
+ <input type="email" id="email" name="email" required>
22
+ <br>
23
+ <label for="location">Location:</label>
24
+ <input type="text" id="location" name="location" required>
25
+ <br>
26
+ <label for="github">GitHub:</label>
27
+ <input type="url" id="github" name="github" required>
28
+ <br>
29
+ <label for="linkedin">LinkedIn:</label>
30
+ <input type="url" id="linkedin" name="linkedin" required>
31
+ <br>
32
+ <label for="phone">Phone:</label>
33
+ <input type="tel" id="phone" name="phone" required>
34
+ <br><br>
35
+ <input type="submit" value="Submit">
36
+ </form>
37
+ </body>
38
+ </html>
39
+ '''
40
+
41
+ solution1 = '''{
42
+ "name": "Ana Guida",
43
+ "email": "[email protected]",
44
+ "location": "Amsterdam, Netherlands",
45
+ "github": "https://github.com/34kmddfn",
46
+ "linkedin": "https://www.linkedin.com/in/ana-rguida/",
47
+ "phone": "+351 928 169 341"
48
+ }'''
49
+
50
+ example2 = '''<!DOCTYPE html>
51
+ <html>
52
+ <head>
53
+ <title>Resume Form</title>
54
+ </head>
55
+ <body>
56
+ <form action="/" method="POST">
57
+ <label>What kind of pet do you have?</label>
58
+ <br>
59
+ <input type="radio" id="dog" name="pet" value="dog">
60
+ <label for="dog">Dog</label>
61
+ <br>
62
+ <input type="radio" id="cat" name="pet" value="cat">
63
+ <label for="cat">Cat</label>
64
+ <br>
65
+ <input type="radio" id="other" name="pet" value="other">
66
+ <label for="other">Other</label>
67
+ <br><br>
68
+ <label>What color is your pet?</label>
69
+ <br>
70
+ <input type="checkbox" id="black" name="color" value="black">
71
+ <label for="black">Black</label>
72
+ <br>
73
+ <input type="checkbox" id="white" name="color" value="white">
74
+ <label for="white">White</label>
75
+ <br>
76
+ <input type="checkbox" id="brown" name="color" value="brown">
77
+ <label for="brown">Brown</label>
78
+ <br><br>
79
+ <input type="submit" value="Submit">
80
+ </form>
81
+ </body>
82
+ </html>
83
+ '''
84
+
85
+ solution2 = '''{
86
+ "pet": "dog",
87
+ "color": [
88
+ "black",
89
+ "brown"
90
+ ]
91
+ }'''
92
+
93
+ example3 = '''<!DOCTYPE html>
94
+ <html>
95
+ <head>
96
+ <title>Create account Form</title>
97
+ </head>
98
+ <body>
99
+ <form action="/" method="POST">
100
+ <label for="name">Name:</label>
101
+ <input type="text" id="name" name="name" required>
102
+ <br>
103
+ <label for="country">Select your country:</label>
104
+ <br>
105
+ <select id="country" name="country">
106
+ <option value="usa">USA</option>
107
+ <option value="uk">UK</option>
108
+ <option value="germany">Germany</option>
109
+ <option value="japan">Japan</option>
110
+ </select>
111
+ <br><br>
112
+ <label for="birthday">Select your birthday:</label>
113
+ <br>
114
+ <input type="date" id="birthday" name="birthday">
115
+ <br><br>
116
+ <input type="submit" value="Submit">
117
+ </form>
118
+ </body>
119
+ </html>
120
+ '''
121
+
122
+ solution3 = '''{
123
+ "name": "Mike",
124
+ "country": "Germany",
125
+ "birthday": "1990-05-07"
126
+ }'''
127
+
128
+
129
  models = {
130
  "model_n1": "sileod/deberta-v3-base-tasksource-nli",
131
  # "model_n2": "roberta-large-mnli",
132
  # "model_n3": "facebook/bart-large-mnli",
133
  # "model_n4": "cross-encoder/nli-deberta-v3-xsmall"
134
  }
135
+ def find_form_fields_from_file(file):
136
  with open(file.name, "r") as f:
137
  content = f.read()
138
+ return find_form_fields(content)
139
 
140
  def find_form_fields(html_content):
141
 
 
187
  execution_time = end_time - start_time # Calculate execution time
188
  return classified_lines, execution_time
189
 
190
+ def classify_lines_json(text, json_content, candidate_labels, model_name):
191
  start_time = time.time() # Start measuring time
192
  classifier = pipeline('zero-shot-classification', model=model_name)
193
 
 
200
  # Open the output.html file in write mode
201
  output_content = []
202
 
203
+ last_input = "None"
204
+ max_index = -1
205
+
206
+ for i, line in enumerate(lines):
207
+ if line.strip() and (line.strip().startswith("<input") or line.strip().startswith("<select") or line.strip().startswith("<option") ) and 'hidden' not in line.lower():
208
+ # Skip empty lines, classify lines starting with "<input", and exclude lines with 'hidden'
209
+ results = classifier(line, candidate_labels=["text", "radio", "checkbox", "button", "date", "select"])
210
+ if results['labels'][0] == "text" or results['labels'][0] == "date":
211
+ # print("text")
212
+ last_input = "text/date"
213
+ input_results = classifier(line, candidate_labels=candidate_labels)
214
+ top_classifications = input_results['labels'][:2] # Get the top two classifications
215
+ top_scores = input_results['scores'][:2] # Get the top two scores
216
+ line = line + f"<!-- Input: <{json_content[top_classifications[0]]}> - certainty: {format(top_scores[0], '.2f')} -->"
217
+ elif results['labels'][0] == "button":
218
+ # print("button")
219
+ last_input = "button"
220
+ line = line + f"<!-- Input: <{results['labels'][0]}> - certainty: {format(results['scores'][0], '.2f')} -->"
221
+ elif results['labels'][0] == "radio":
222
+ # print("radio")
223
+ if(last_input == "radio"):
224
+ radio_options.append(line)
225
+ radio_options_i.append(i)
226
+ else:
227
+ radio_options = [line]
228
+ radio_options_i = [i]
229
+ radio_results_list = []
230
+ last_input = "radio"
231
+ input_results = classifier(line, candidate_labels=candidate_labels)
232
+ top_classifications = input_results['labels'][:2] # Get the top two classifications
233
+ top_scores = input_results['scores'][:2] # Get the top two scores
234
+
235
+ radio_results = classifier(line, candidate_labels=[json_content[top_classifications[0]]])
236
+ radio_results_list.append(radio_results)
237
+
238
+ # Get the scores from the radio_results_list
239
+ scores = [result['scores'][0] for result in radio_results_list]
240
+
241
+ previous_max_index = max_index
242
+ # Find the index of the maximum score
243
+ max_index = scores.index(max(scores))
244
+
245
+ if previous_max_index != max_index:
246
+
247
+ line_selected = radio_options[previous_max_index]
248
+ real_index = radio_options_i[previous_max_index]
249
+ if real_index < len(output_content):
250
+ output_content[real_index] = line_selected
251
+
252
+ line_selected = radio_options[max_index]
253
+ line_selected = line_selected + f"<!-- Input: <{results['labels'][0]}> - certainty: {format(results['scores'][0], '.2f')}. LINE TO SELECT: <{radio_results['labels'][0]}> - certainty: {format(max(scores), '.2f')} -->"
254
+ real_index = radio_options_i[max_index]
255
+
256
+ if real_index < len(output_content):
257
+ output_content[real_index] = line_selected
258
+ else:
259
+ line = line_selected
260
+ elif results['labels'][0] == "checkbox":
261
+ # print("checkbox")
262
+ last_input = "checkbox"
263
+ input_results = classifier(line, candidate_labels=candidate_labels)
264
+ top_classifications = input_results['labels'][:2] # Get the top two classifications
265
+ top_scores = input_results['scores'][:2] # Get the top two scores
266
+
267
+ checkbox_results = classifier(line, candidate_labels=[json_content[top_classifications[0]]])
268
+
269
+ if checkbox_results['scores'][0] > 0.8:
270
+ line = line + f"<!-- Input: <{results['labels'][0]}> - certainty: {format(results['scores'][0], '.2f')}. LINE TO SELECT: <{checkbox_results['labels'][0]}> - certainty: {format(checkbox_results['scores'][0], '.2f')} -->"
271
+ else: #elif results['labels'][0] == "select" or results['labels'][0] == "option":
272
+ # print("select")
273
+ if(last_input == "select"):
274
+ select_options.append(line)
275
+ select_options_i.append(i)
276
+ else:
277
+ select_options = [line]
278
+ select_options_i = [i]
279
+ select_results_list = []
280
+ last_input = "select"
281
+ input_results = classifier(line, candidate_labels=candidate_labels)
282
+ top_classifications = input_results['labels'][:2] # Get the top two classifications
283
+ top_scores = input_results['scores'][:2] # Get the top two scores
284
+
285
+ select_results = classifier(line, candidate_labels=[json_content[top_classifications[0]]])
286
+ select_results_list.append(select_results)
287
+
288
+ # Get the scores from the select_results_list
289
+ scores = [result['scores'][0] for result in select_results_list]
290
+
291
+ previous_max_index = max_index
292
+ # Find the index of the maximum score
293
+ max_index = scores.index(max(scores))
294
+
295
+ if previous_max_index != max_index:
296
+ line_selected = select_options[previous_max_index]
297
+ real_index = select_options_i[previous_max_index]
298
+ if real_index < len(output_content):
299
+ output_content[real_index] = line_selected
300
+
301
+ line_selected = select_options[max_index]
302
+ line_selected = line_selected + f"<!-- Input: <{results['labels'][0]}> - certainty: {format(results['scores'][0], '.2f')}. LINE TO SELECT: <{select_results['labels'][0]}> - certainty: {format(max(scores), '.2f')} -->"
303
+ real_index = select_options_i[max_index]
304
+
305
+ if real_index < len(output_content):
306
+ output_content[real_index] = line_selected
307
+ else:
308
+ line = line_selected
309
+
310
+ output_content.append(line)
311
 
312
 
313
  end_time = time.time() # Stop measuring time
 
347
 
348
 
349
  def process_files(html_file, json_file):
350
+
351
+ #html_content = open_html(html_file)
352
+ #print(html_file)
353
+ html_inputs = find_form_fields(html_file)
354
+ #print(json_file)
355
+ json_content = retrieve_fields(json.loads(json_file))
 
 
 
356
  #Classificar os inputs do json para ver em que tipo de input ["text", "radio", "checkbox", "button", "date"]
357
 
358
  # Classify lines and measure execution time
359
  for model_name in models.values():
360
  tokenizer = AutoTokenizer.from_pretrained(model_name)
361
 
362
+ #html_classified_lines, html_execution_time = classify_lines(html_inputs, ["text", "radio", "checkbox", "button", "date", "select"], model_name)
363
 
364
+ json_classified_lines, json_execution_time = classify_lines_json(html_file, json_content, list(json_content.keys()), model_name)
365
 
366
  # print(str(html_execution_time) + " - " + str(html_classified_lines))
367
  # print(str(json_execution_time) + " - " + str(json_classified_lines))
368
+
 
369
  #print(type(json_classified_lines))
370
+
 
371
  #return '\n'.join(map(str, html_classified_lines))
372
  return '\n'.join(map(str, json_classified_lines))
373
 
374
  iface = gr.Interface(fn=process_files,
375
+ inputs=[gr.Textbox(lines = 20, max_lines = 1000, label="Upload HTML File"), gr.Textbox(lines = 20, max_lines = 1000, label="Upload JSON File")],
376
+ outputs=gr.Textbox(lines = 20, max_lines = 1000, label="Output"),
377
+ examples=[
378
+ [example1, solution1],
379
+ [example2, solution2],
380
+ [example3, solution3],
381
+ ])
382
 
383
 
384
  iface.launch()
app_files.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from bs4 import BeautifulSoup
3
+ import json
4
+ import time
5
+ import os
6
+ from transformers import AutoTokenizer, pipeline
7
+
8
+ models = {
9
+ "model_n1": "sileod/deberta-v3-base-tasksource-nli",
10
+ # "model_n2": "roberta-large-mnli",
11
+ # "model_n3": "facebook/bart-large-mnli",
12
+ # "model_n4": "cross-encoder/nli-deberta-v3-xsmall"
13
+ }
14
+ def open_html(file):
15
+ with open(file.name, "r") as f:
16
+ content = f.read()
17
+ return content
18
+
19
+ def find_form_fields(html_content):
20
+
21
+ soup = BeautifulSoup(html_content, 'html.parser')
22
+
23
+ # find all form tags
24
+ forms = soup.find_all('form')
25
+
26
+ form_fields = []
27
+
28
+ for form in forms:
29
+ # find all input and select tags within each form
30
+ input_tags = form.find_all('input')
31
+ select_tags = form.find_all('select')
32
+
33
+ for tag in input_tags:
34
+ form_fields.append(str(tag))
35
+
36
+ for tag in select_tags:
37
+ form_fields.append(str(tag))
38
+
39
+ # Convert the list to a single string for display
40
+ return form_fields
41
+
42
+ def load_json(json_file):
43
+ with open(json_file, 'r') as f:
44
+ data = json.load(f)
45
+ return data
46
+
47
+ def classify_lines(text, candidate_labels, model_name):
48
+ start_time = time.time() # Start measuring time
49
+ classifier = pipeline('zero-shot-classification', model=model_name)
50
+
51
+ # Check if the text is already a list or if it needs splitting
52
+ if isinstance(text, list):
53
+ lines = text
54
+ else:
55
+ lines = text.split('\n')
56
+
57
+ classified_lines = []
58
+ for line in lines:
59
+ if line.strip() and (line.strip().startswith("<input") or line.strip().startswith("<select") )and 'hidden' not in line.lower():
60
+ # Skip empty lines, classify lines starting with "<input", and exclude lines with 'hidden'
61
+ results = classifier(line, candidate_labels=candidate_labels)
62
+ top_classifications = results['labels'][:2] # Get the top two classifications
63
+ top_scores = results['scores'][:2] # Get the top two scores
64
+ classified_lines.append((line, list(zip(top_classifications, top_scores))))
65
+ end_time = time.time() # Stop measuring time
66
+ execution_time = end_time - start_time # Calculate execution time
67
+ return classified_lines, execution_time
68
+
69
+ def classify_lines_json(text, json_content, candidate_labels, model_name, output_file_path):
70
+ start_time = time.time() # Start measuring time
71
+ classifier = pipeline('zero-shot-classification', model=model_name)
72
+
73
+ # Check if the text is already a list or if it needs splitting
74
+ if isinstance(text, list):
75
+ lines = text
76
+ else:
77
+ lines = text.split('\n')
78
+
79
+ # Open the output.html file in write mode
80
+ output_content = []
81
+
82
+ with open(output_file_path, 'w') as output_file:
83
+ for line in lines:
84
+
85
+ if line.strip() and (line.strip().startswith("<input") or line.strip().startswith("<select") )and 'hidden' not in line.lower():
86
+ # Skip empty lines, classify lines starting with "<input", and exclude lines with 'hidden'
87
+ results = classifier(line, candidate_labels=candidate_labels)
88
+ top_classifications = results['labels'][:2] # Get the top two classifications
89
+ top_scores = results['scores'][:2] # Get the top two scores
90
+ line = line + f"<!-- Input: {json_content[top_classifications[0]]} with this certainty: {top_scores[0]} -->"
91
+ output_file.write(line + '\n')
92
+ output_content.append(line + '\n')
93
+
94
+
95
+ end_time = time.time() # Stop measuring time
96
+ execution_time = end_time - start_time # Calculate execution time
97
+ return output_content, execution_time
98
+
99
+ def retrieve_fields(data, path=''):
100
+ """Recursively retrieve all fields from a given JSON structure and prompt for filling."""
101
+ fields = {}
102
+
103
+ # If the data is a dictionary
104
+ if isinstance(data, dict):
105
+ for key, value in data.items():
106
+ # Construct the updated path for nested structures
107
+ new_path = f"{path}.{key}" if path else key
108
+ fields.update(retrieve_fields(value, new_path))
109
+
110
+ # If the data is a list, iterate over its items
111
+ elif isinstance(data, list):
112
+ for index, item in enumerate(data):
113
+ new_path = f"{path}[{index}]"
114
+ fields.update(retrieve_fields(item, new_path))
115
+
116
+ # If the data is a simple type (str, int, etc.)
117
+ else:
118
+ prompt = f"Please fill in the {path} field." if not data else data
119
+ fields[path] = prompt
120
+
121
+ return fields
122
+
123
+ def retrieve_fields_from_file(file_path):
124
+ """Load JSON data from a file, then retrieve all fields and prompt for filling."""
125
+ with open(file_path.name, 'r') as f:
126
+ data = f.read()
127
+
128
+ return retrieve_fields(json.loads(data))
129
+
130
+
131
+ def process_files(html_file, json_file):
132
+ # This function will process the files.
133
+ # Replace this with your own logic.
134
+ output_file_path = "./output.html"
135
+ # Open and read the files
136
+ html_content = open_html(html_file)
137
+ #print(html_content)
138
+ html_inputs = find_form_fields(html_content)
139
+
140
+ json_content = retrieve_fields_from_file(json_file)
141
+ #Classificar os inputs do json para ver em que tipo de input ["text", "radio", "checkbox", "button", "date"]
142
+
143
+ # Classify lines and measure execution time
144
+ for model_name in models.values():
145
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
146
+
147
+ html_classified_lines, html_execution_time = classify_lines(html_inputs, ["text", "radio", "checkbox", "button", "date"], model_name)
148
+
149
+ json_classified_lines, json_execution_time = classify_lines_json(html_content, json_content, list(json_content.keys()), model_name, output_file_path)
150
+
151
+ # print(str(html_execution_time) + " - " + str(html_classified_lines))
152
+ # print(str(json_execution_time) + " - " + str(json_classified_lines))
153
+ #FILL HERE
154
+
155
+ #print(type(json_classified_lines))
156
+ # Assuming your function returns the processed HTML
157
+ #json_classified_lines
158
+ #return '\n'.join(map(str, html_classified_lines))
159
+ return '\n'.join(map(str, json_classified_lines))
160
+
161
+ iface = gr.Interface(fn=process_files,
162
+ inputs=[gr.inputs.File(label="Upload HTML File"), gr.inputs.File(label="Upload JSON File")],
163
+ outputs="text",
164
+ examples=[
165
+ # ["./examples/form0.html", "./examples/form0_answer.json"],
166
+ ["./public/form1.html", "./public/form1_answer.json"],
167
+ ["./public/form2.html", "./public/form2_answer.json"],
168
+ ["./public/form3.html", "./public/form3_answer.json"],
169
+ ["./public/form4.html", "./public/form4_answer.json"]
170
+ ])
171
+
172
+
173
+ iface.launch()
output.html ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html>
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <title>Contact Form</title>
6
+ </head>
7
+ <body>
8
+ <h1>Contact Form</h1>
9
+ <form action="/submit-form" method="POST">
10
+ <label for="name">Name:</label>
11
+ <input type="text" id="name" name="name" required><!-- Input: Please fill in the name field. with this certainty: 0.8276665210723877 -->
12
+ <br>
13
+ <label for="email">Email:</label>
14
+ <input type="email" id="email" name="email" required><!-- Input: [email protected] with this certainty: 0.8814952373504639 -->
15
+ <br>
16
+ <label for="location">Location:</label>
17
+ <input type="text" id="location" name="location" required><!-- Input: Amsterdam, Netherlands with this certainty: 0.845346212387085 -->
18
+ <br>
19
+ <label for="github">GitHub:</label>
20
+ <input type="url" id="github" name="github" required><!-- Input: https://github.com/qtoino with this certainty: 0.6784256100654602 -->
21
+ <br>
22
+ <label for="linkedin">LinkedIn:</label>
23
+ <input type="url" id="linkedin" name="linkedin" required><!-- Input: https://www.linkedin.com/in/francisco-rsantos/ with this certainty: 0.735436737537384 -->
24
+ <br>
25
+ <label for="phone">Phone:</label>
26
+ <input type="tel" id="phone" name="phone" required><!-- Input: +351 927 050 265 with this certainty: 0.8759291768074036 -->
27
+ <br><br>
28
+ <input type="submit" value="Submit"><!-- Input: Please fill in the name field. with this certainty: 0.2793944180011749 -->
29
+ </form>
30
+ </body>
31
+ </html>