Spaces:
Running
Running
# pylint: disable=R0801 | |
""" | |
This module is responsible for animating faces in videos using a combination of deep learning techniques. | |
It provides a pipeline for generating face animations by processing video frames and extracting face features. | |
The module utilizes various schedulers and utilities for efficient face animation and supports different types | |
of latents for more control over the animation process. | |
Functions and Classes: | |
- FaceAnimatePipeline: A class that extends the DiffusionPipeline class from the diffusers library to handle face animation tasks. | |
- __init__: Initializes the pipeline with the necessary components (VAE, UNets, face locator, etc.). | |
- prepare_latents: Generates or loads latents for the animation process, scaling them according to the scheduler's requirements. | |
- prepare_extra_step_kwargs: Prepares extra keyword arguments for the scheduler step, ensuring compatibility with different schedulers. | |
- decode_latents: Decodes the latents into video frames, ready for animation. | |
Usage: | |
- Import the necessary packages and classes. | |
- Create a FaceAnimatePipeline instance with the required components. | |
- Prepare the latents for the animation process. | |
- Use the pipeline to generate the animated video. | |
Note: | |
- This module is designed to work with the diffusers library, which provides the underlying framework for face animation using deep learning. | |
- The module is intended for research and development purposes, and further optimization and customization may be required for specific use cases. | |
""" | |
import inspect | |
from dataclasses import dataclass | |
from typing import Callable, List, Optional, Union | |
import numpy as np | |
import torch | |
from diffusers import (DDIMScheduler, DiffusionPipeline, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, | |
LMSDiscreteScheduler, PNDMScheduler) | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.utils import BaseOutput | |
from diffusers.utils.torch_utils import randn_tensor | |
from einops import rearrange, repeat | |
from tqdm import tqdm | |
from hallo.models.mutual_self_attention import ReferenceAttentionControl | |
class FaceAnimatePipelineOutput(BaseOutput): | |
""" | |
FaceAnimatePipelineOutput is a custom class that inherits from BaseOutput and represents the output of the FaceAnimatePipeline. | |
Attributes: | |
videos (Union[torch.Tensor, np.ndarray]): A tensor or numpy array containing the generated video frames. | |
Methods: | |
__init__(self, videos: Union[torch.Tensor, np.ndarray]): Initializes the FaceAnimatePipelineOutput object with the generated video frames. | |
""" | |
videos: Union[torch.Tensor, np.ndarray] | |
class FaceAnimatePipeline(DiffusionPipeline): | |
""" | |
FaceAnimatePipeline is a custom DiffusionPipeline for animating faces. | |
It inherits from the DiffusionPipeline class and is used to animate faces by | |
utilizing a variational autoencoder (VAE), a reference UNet, a denoising UNet, | |
a face locator, and an image processor. The pipeline is responsible for generating | |
and animating face latents, and decoding the latents to produce the final video output. | |
Attributes: | |
vae (VaeImageProcessor): Variational autoencoder for processing images. | |
reference_unet (nn.Module): Reference UNet for mutual self-attention. | |
denoising_unet (nn.Module): Denoising UNet for image denoising. | |
face_locator (nn.Module): Face locator for detecting and cropping faces. | |
image_proj (nn.Module): Image projector for processing images. | |
scheduler (Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, | |
EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler]): Diffusion scheduler for | |
controlling the noise level. | |
Methods: | |
__init__(self, vae, reference_unet, denoising_unet, face_locator, | |
image_proj, scheduler): Initializes the FaceAnimatePipeline | |
with the given components and scheduler. | |
prepare_latents(self, batch_size, num_channels_latents, width, height, | |
video_length, dtype, device, generator=None, latents=None): | |
Prepares the initial latents for video generation. | |
prepare_extra_step_kwargs(self, generator, eta): Prepares extra keyword | |
arguments for the scheduler step. | |
decode_latents(self, latents): Decodes the latents to produce the final | |
video output. | |
""" | |
def __init__( | |
self, | |
vae, | |
reference_unet, | |
denoising_unet, | |
face_locator, | |
image_proj, | |
scheduler: Union[ | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
], | |
) -> None: | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
reference_unet=reference_unet, | |
denoising_unet=denoising_unet, | |
face_locator=face_locator, | |
scheduler=scheduler, | |
image_proj=image_proj, | |
) | |
self.vae_scale_factor: int = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.ref_image_processor = VaeImageProcessor( | |
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, | |
) | |
def _execution_device(self): | |
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def prepare_latents( | |
self, | |
batch_size: int, # Number of videos to generate in parallel | |
num_channels_latents: int, # Number of channels in the latents | |
width: int, # Width of the video frame | |
height: int, # Height of the video frame | |
video_length: int, # Length of the video in frames | |
dtype: torch.dtype, # Data type of the latents | |
device: torch.device, # Device to store the latents on | |
generator: Optional[torch.Generator] = None, # Random number generator for reproducibility | |
latents: Optional[torch.Tensor] = None # Pre-generated latents (optional) | |
): | |
""" | |
Prepares the initial latents for video generation. | |
Args: | |
batch_size (int): Number of videos to generate in parallel. | |
num_channels_latents (int): Number of channels in the latents. | |
width (int): Width of the video frame. | |
height (int): Height of the video frame. | |
video_length (int): Length of the video in frames. | |
dtype (torch.dtype): Data type of the latents. | |
device (torch.device): Device to store the latents on. | |
generator (Optional[torch.Generator]): Random number generator for reproducibility. | |
latents (Optional[torch.Tensor]): Pre-generated latents (optional). | |
Returns: | |
latents (torch.Tensor): Tensor of shape (batch_size, num_channels_latents, width, height) | |
containing the initial latents for video generation. | |
""" | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
video_length, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor( | |
shape, generator=generator, device=device, dtype=dtype | |
) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def prepare_extra_step_kwargs(self, generator, eta): | |
""" | |
Prepares extra keyword arguments for the scheduler step. | |
Args: | |
generator (Optional[torch.Generator]): Random number generator for reproducibility. | |
eta (float): The eta (η) parameter used with the DDIMScheduler. | |
It corresponds to η in the DDIM paper (https://arxiv.org/abs/2010.02502) and should be between [0, 1]. | |
Returns: | |
dict: A dictionary containing the extra keyword arguments for the scheduler step. | |
""" | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set( | |
inspect.signature(self.scheduler.step).parameters.keys() | |
) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set( | |
inspect.signature(self.scheduler.step).parameters.keys() | |
) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def decode_latents(self, latents): | |
""" | |
Decode the latents to produce a video. | |
Parameters: | |
latents (torch.Tensor): The latents to be decoded. | |
Returns: | |
video (torch.Tensor): The decoded video. | |
video_length (int): The length of the video in frames. | |
""" | |
video_length = latents.shape[2] | |
latents = 1 / 0.18215 * latents | |
latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
# video = self.vae.decode(latents).sample | |
video = [] | |
for frame_idx in tqdm(range(latents.shape[0])): | |
video.append(self.vae.decode( | |
latents[frame_idx: frame_idx + 1]).sample) | |
video = torch.cat(video) | |
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
video = (video / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
video = video.cpu().float().numpy() | |
return video | |
def __call__( | |
self, | |
ref_image, | |
face_emb, | |
audio_tensor, | |
face_mask, | |
pixel_values_full_mask, | |
pixel_values_face_mask, | |
pixel_values_lip_mask, | |
width, | |
height, | |
video_length, | |
num_inference_steps, | |
guidance_scale, | |
num_images_per_prompt=1, | |
eta: float = 0.0, | |
motion_scale: Optional[List[torch.Tensor]] = None, | |
generator: Optional[Union[torch.Generator, | |
List[torch.Generator]]] = None, | |
output_type: Optional[str] = "tensor", | |
return_dict: bool = True, | |
callback: Optional[Callable[[ | |
int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
**kwargs, | |
): | |
# Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
device = self._execution_device | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
batch_size = 1 | |
# prepare clip image embeddings | |
clip_image_embeds = face_emb | |
clip_image_embeds = clip_image_embeds.to(self.image_proj.device, self.image_proj.dtype) | |
encoder_hidden_states = self.image_proj(clip_image_embeds) | |
uncond_encoder_hidden_states = self.image_proj(torch.zeros_like(clip_image_embeds)) | |
if do_classifier_free_guidance: | |
encoder_hidden_states = torch.cat([uncond_encoder_hidden_states, encoder_hidden_states], dim=0) | |
reference_control_writer = ReferenceAttentionControl( | |
self.reference_unet, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
mode="write", | |
batch_size=batch_size, | |
fusion_blocks="full", | |
) | |
reference_control_reader = ReferenceAttentionControl( | |
self.denoising_unet, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
mode="read", | |
batch_size=batch_size, | |
fusion_blocks="full", | |
) | |
num_channels_latents = self.denoising_unet.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
width, | |
height, | |
video_length, | |
clip_image_embeds.dtype, | |
device, | |
generator, | |
) | |
# Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# Prepare ref image latents | |
ref_image_tensor = rearrange(ref_image, "b f c h w -> (b f) c h w") | |
ref_image_tensor = self.ref_image_processor.preprocess(ref_image_tensor, height=height, width=width) # (bs, c, width, height) | |
ref_image_tensor = ref_image_tensor.to(dtype=self.vae.dtype, device=self.vae.device) | |
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean | |
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w) | |
face_mask = face_mask.unsqueeze(1).to(dtype=self.face_locator.dtype, device=self.face_locator.device) # (bs, f, c, H, W) | |
face_mask = repeat(face_mask, "b f c h w -> b (repeat f) c h w", repeat=video_length) | |
face_mask = face_mask.transpose(1, 2) # (bs, c, f, H, W) | |
face_mask = self.face_locator(face_mask) | |
face_mask = torch.cat([torch.zeros_like(face_mask), face_mask], dim=0) if do_classifier_free_guidance else face_mask | |
pixel_values_full_mask = ( | |
[torch.cat([mask] * 2) for mask in pixel_values_full_mask] | |
if do_classifier_free_guidance | |
else pixel_values_full_mask | |
) | |
pixel_values_face_mask = ( | |
[torch.cat([mask] * 2) for mask in pixel_values_face_mask] | |
if do_classifier_free_guidance | |
else pixel_values_face_mask | |
) | |
pixel_values_lip_mask = ( | |
[torch.cat([mask] * 2) for mask in pixel_values_lip_mask] | |
if do_classifier_free_guidance | |
else pixel_values_lip_mask | |
) | |
pixel_values_face_mask_ = [] | |
for mask in pixel_values_face_mask: | |
pixel_values_face_mask_.append( | |
mask.to(device=self.denoising_unet.device, dtype=self.denoising_unet.dtype)) | |
pixel_values_face_mask = pixel_values_face_mask_ | |
pixel_values_lip_mask_ = [] | |
for mask in pixel_values_lip_mask: | |
pixel_values_lip_mask_.append( | |
mask.to(device=self.denoising_unet.device, dtype=self.denoising_unet.dtype)) | |
pixel_values_lip_mask = pixel_values_lip_mask_ | |
pixel_values_full_mask_ = [] | |
for mask in pixel_values_full_mask: | |
pixel_values_full_mask_.append( | |
mask.to(device=self.denoising_unet.device, dtype=self.denoising_unet.dtype)) | |
pixel_values_full_mask = pixel_values_full_mask_ | |
uncond_audio_tensor = torch.zeros_like(audio_tensor) | |
audio_tensor = torch.cat([uncond_audio_tensor, audio_tensor], dim=0) | |
audio_tensor = audio_tensor.to(dtype=self.denoising_unet.dtype, device=self.denoising_unet.device) | |
# denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# Forward reference image | |
if i == 0: | |
self.reference_unet( | |
ref_image_latents.repeat( | |
(2 if do_classifier_free_guidance else 1), 1, 1, 1 | |
), | |
torch.zeros_like(t), | |
encoder_hidden_states=encoder_hidden_states, | |
return_dict=False, | |
) | |
reference_control_reader.update(reference_control_writer) | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
noise_pred = self.denoising_unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=encoder_hidden_states, | |
mask_cond_fea=face_mask, | |
full_mask=pixel_values_full_mask, | |
face_mask=pixel_values_face_mask, | |
lip_mask=pixel_values_lip_mask, | |
audio_embedding=audio_tensor, | |
motion_scale=motion_scale, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0: | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
reference_control_reader.clear() | |
reference_control_writer.clear() | |
# Post-processing | |
images = self.decode_latents(latents) # (b, c, f, h, w) | |
# Convert to tensor | |
if output_type == "tensor": | |
images = torch.from_numpy(images) | |
if not return_dict: | |
return images | |
return FaceAnimatePipelineOutput(videos=images) | |