#!/usr/bin/env python import os import random import uuid import base64 import gradio as gr import numpy as np from PIL import Image import spaces import torch from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler DESCRIPTION = """# DALL•E 3 XL v2 High Fi""" def create_download_link(filename): with open(filename, "rb") as file: encoded_string = base64.b64encode(file.read()).decode('utf-8') download_link = f'Download Image' return download_link def save_image(img, prompt): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) # save with promp to save prompt as image file name filename = f"{prompt}.png" img.save(filename) return filename return unique_name def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed MAX_SEED = np.iinfo(np.int32).max if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo may not work on CPU.

" MAX_SEED = np.iinfo(np.int32).max USE_TORCH_COMPILE = 0 ENABLE_CPU_OFFLOAD = 0 if torch.cuda.is_available(): pipe = StableDiffusionXLPipeline.from_pretrained( "fluently/Fluently-XL-v4", torch_dtype=torch.float16, use_safetensors=True, ) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle") pipe.set_adapters("dalle") pipe.to("cuda") @spaces.GPU(enable_queue=True) def generate( prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, #width: int = 1920, #height: int = 1080, guidance_scale: float = 3, #randomize_seed: bool = True, randomize_seed: bool = False, progress=gr.Progress(track_tqdm=True), ): seed = int(randomize_seed_fn(seed, randomize_seed)) if not use_negative_prompt: negative_prompt = "" # type: ignore images = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=20, #num_inference_steps=50, num_images_per_prompt=4, #cross_attention_kwargs={"scale": 2.00}, cross_attention_kwargs={"scale": 0.65}, output_type="pil", ).images image_paths = [save_image(img, prompt) for img in images] #image_paths = [save_image(img) for img in images] download_links = [create_download_link(path) for path in image_paths] print(image_paths) #return image_paths, seed return image_paths, seed, download_links #examples = [ # "neon holography crystal cat", # "a cat eating a piece of cheese", # "an astronaut riding a horse in space", # "a cartoon of a boy playing with a tiger", # "a cute robot artist painting on an easel, concept art", # "a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone" #] examples = [ "a modern hospital room with advanced medical equipment and a patient resting comfortably", "a team of surgeons performing a delicate operation using state-of-the-art surgical robots", "a elderly woman smiling while a nurse checks her vital signs using a holographic display", "a child receiving a painless vaccination from a friendly robot nurse in a colorful pediatric clinic", "a group of researchers working in a high-tech laboratory, developing new treatments for rare diseases", "a telemedicine consultation between a doctor and a patient, using virtual reality technology for a immersive experience" ] css = ''' .gradio-container{max-width: 1024px !important} h1{text-align:center} footer { visibility: hidden } ''' #css = ''' #.gradio-container{max-width: 560px !important} #h1{text-align:center} #footer { # visibility: hidden #} #''' with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=False, ) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False) with gr.Accordion("Advanced options", open=False): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) negative_prompt = gr.Text( label="Negative prompt", lines=4, max_lines=6, value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""", placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, visible=True ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(visible=True): width = gr.Slider( label="Width", minimum=512, maximum=2048, step=8, value=1920, ) height = gr.Slider( label="Height", minimum=512, maximum=2048, step=8, value=1080, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=20.0, ) gr.Examples( examples=examples, inputs=prompt, outputs=[result, seed], fn=generate, cache_examples=False, ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) gr.on( triggers=[ prompt.submit, negative_prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, randomize_seed, ], outputs=[result, seed], api_name="run", ) if __name__ == "__main__": demo.queue(max_size=20).launch(show_api=False, debug=False)