File size: 7,173 Bytes
f3742f4
 
 
 
 
5bccb00
f3742f4
 
 
 
 
5bccb00
5dbd673
f3742f4
5bccb00
f3742f4
9ad3aab
 
 
 
 
 
 
f3742f4
 
9ad3aab
 
 
 
 
 
f3742f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f44fea
096c8e0
f3742f4
 
 
 
e8a5fba
7805dc1
f3742f4
7805dc1
e8a5fba
 
7805dc1
f3742f4
 
 
 
 
 
 
 
1f4dd0b
 
 
 
f3742f4
1f4dd0b
 
f3742f4
 
 
 
 
 
 
 
 
88a08d8
f3742f4
 
 
 
 
1f4dd0b
f3742f4
1f4dd0b
 
f3742f4
 
0c60c16
 
 
9ad3aab
 
f3742f4
9ad3aab
 
 
f3742f4
1884510
 
 
 
 
 
 
 
 
f3742f4
1884510
 
 
 
 
 
f3742f4
 
1884510
f3742f4
1884510
f3742f4
 
1884510
f3742f4
 
1884510
 
 
 
 
 
 
 
 
 
 
88a08d8
f3742f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dbc715
f3742f4
 
 
 
9dbc715
f3742f4
9dbc715
f3742f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21c860f
f3742f4
 
 
 
 
 
21c860f
f3742f4
 
 
 
 
 
 
21c860f
f3742f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/env python

import os
import random
import uuid
import base64
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch

from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

DESCRIPTION = """# DALL•E 3 XL v2 High Fi"""

def create_download_link(filename):
    with open(filename, "rb") as file:
        encoded_string = base64.b64encode(file.read()).decode('utf-8')
        download_link = f'<a href="data:image/png;base64,{encoded_string}" download="{filename}">Download Image</a>'
        return download_link
        
def save_image(img, prompt):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)

    # save with promp to save prompt as image file name
    filename = f"{prompt}.png"
    img.save(filename)
    return filename
    
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

MAX_SEED = np.iinfo(np.int32).max

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max

USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0


if torch.cuda.is_available():
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "fluently/Fluently-XL-v4",
        torch_dtype=torch.float16,
        use_safetensors=True,
    )
    pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    
    
    pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
    pipe.set_adapters("dalle")

    pipe.to("cuda")
    
    

@spaces.GPU(enable_queue=True)
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    #width: int = 1024,
    #height: int = 1024,
    width: int = 1920,
    height: int = 1080,
    guidance_scale: float = 3,
    randomize_seed: bool = True,
    #randomize_seed: bool = False,
    progress=gr.Progress(track_tqdm=True),
):

    
    seed = int(randomize_seed_fn(seed, randomize_seed))

    if not use_negative_prompt:
        negative_prompt = ""  # type: ignore

    images = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=50,
        num_images_per_prompt=1,
        cross_attention_kwargs={"scale": 2.00},
        #cross_attention_kwargs={"scale": 0.65},
        output_type="pil",
    ).images
    image_paths = [save_image(img, prompt) for img in images]

    #image_paths = [save_image(img) for img in images]
    download_links = [create_download_link(path) for path in image_paths]

    print(image_paths)
    #return image_paths, seed
    return image_paths, seed, download_links


#examples = [
#    "neon holography crystal cat",
#    "a cat eating a piece of cheese",
#    "an astronaut riding a horse in space",
#    "a cartoon of a boy playing with a tiger",
#    "a cute robot artist painting on an easel, concept art",
#    "a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone"
#]

examples = [
"a modern hospital room with advanced medical equipment and a patient resting comfortably",
"a team of surgeons performing a delicate operation using state-of-the-art surgical robots",
"a elderly woman smiling while a nurse checks her vital signs using a holographic display",
"a child receiving a painless vaccination from a friendly robot nurse in a colorful pediatric clinic",
"a group of researchers working in a high-tech laboratory, developing new treatments for rare diseases",
"a telemedicine consultation between a doctor and a patient, using virtual reality technology for a immersive experience"
]


css = '''
.gradio-container{max-width: 1024px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''


#css = '''
#.gradio-container{max-width: 560px !important}
#h1{text-align:center}
#footer {
#    visibility: hidden
#}
#'''


with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=False,
    )

    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
    with gr.Accordion("Advanced options", open=False):
        use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
        negative_prompt = gr.Text(
            label="Negative prompt",
            lines=4,
            max_lines=6,
            value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""",
            placeholder="Enter a negative prompt",
            visible=True,
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
            visible=True
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=2048,
                step=8,
                value=1920,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=2048,
                step=8,
                value=1080,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=20.0,
                step=0.1,
                value=20.0,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=False,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )
    

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
        ],
        outputs=[result, seed],
        api_name="run",
    )
    
if __name__ == "__main__":
    demo.queue(max_size=20).launch(show_api=False, debug=False)