Spaces:
Sleeping
Sleeping
File size: 7,018 Bytes
f3742f4 5dbd673 f3742f4 9ad3aab f3742f4 9ad3aab f3742f4 6f44fea 096c8e0 f3742f4 e8a5fba 7805dc1 f3742f4 7805dc1 e8a5fba 7805dc1 f3742f4 88a08d8 f3742f4 9e82664 f3742f4 0c60c16 9ad3aab f3742f4 9ad3aab f3742f4 1884510 f3742f4 1884510 f3742f4 1884510 f3742f4 1884510 f3742f4 1884510 f3742f4 1884510 88a08d8 f3742f4 9dbc715 f3742f4 9dbc715 f3742f4 9dbc715 f3742f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
#!/usr/bin/env python
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
DESCRIPTION = """
# DALL•E 3 XL v2
"""
def create_download_link(filename):
with open(filename, "rb") as file:
encoded_string = base64.b64encode(file.read()).decode('utf-8')
download_link = f'<a href="data:image/png;base64,{encoded_string}" download="{filename}">Download Image</a>'
return download_link
def save_image(img, prompt):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
# save with promp to save prompt as image file name
filename = f"{prompt}.png"
img.save(filename)
return filename
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0
if torch.cuda.is_available():
pipe = StableDiffusionXLPipeline.from_pretrained(
"fluently/Fluently-XL-v4",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
pipe.set_adapters("dalle")
pipe.to("cuda")
@spaces.GPU(enable_queue=True)
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
if not use_negative_prompt:
negative_prompt = "" # type: ignore
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=25,
num_images_per_prompt=1,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
).images
image_paths = [save_image(img, prompt) for img in images]
#image_paths = [save_image(img) for img in images]
download_links = [create_download_link(path) for path in image_paths]
print(image_paths)
#return image_paths, seed
return image_paths, seed, download_links
#examples = [
# "neon holography crystal cat",
# "a cat eating a piece of cheese",
# "an astronaut riding a horse in space",
# "a cartoon of a boy playing with a tiger",
# "a cute robot artist painting on an easel, concept art",
# "a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone"
#]
examples = [
"a modern hospital room with advanced medical equipment and a patient resting comfortably",
"a team of surgeons performing a delicate operation using state-of-the-art surgical robots",
"a elderly woman smiling while a nurse checks her vital signs using a holographic display",
"a child receiving a painless vaccination from a friendly robot nurse in a colorful pediatric clinic",
"a group of researchers working in a high-tech laboratory, developing new treatments for rare diseases",
"a telemedicine consultation between a doctor and a patient, using virtual reality technology for a immersive experience"
]
css = '''
.gradio-container{max-width: 1024px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
#css = '''
#.gradio-container{max-width: 560px !important}
#h1{text-align:center}
#footer {
# visibility: hidden
#}
#'''
with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=False,
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
with gr.Accordion("Advanced options", open=False):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
lines=4,
max_lines=6,
value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""",
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=6,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=False,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(show_api=False, debug=False) |