VoiceCraft_gradio / data /tokenizer.py
jason-salt
init
b971d47
# cp from https://github.com/lifeiteng/vall-e/blob/main/valle/data/tokenizer.py
# Copyright 2023 (authors: Feiteng Li)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from dataclasses import asdict, dataclass
from typing import Any, Dict, List, Optional, Pattern, Union
import numpy as np
import torch
import torchaudio
# from lhotse.features import FeatureExtractor
# from lhotse.utils import Seconds, compute_num_frames
from phonemizer.backend import EspeakBackend
from phonemizer.backend.espeak.language_switch import LanguageSwitch
from phonemizer.backend.espeak.words_mismatch import WordMismatch
from phonemizer.punctuation import Punctuation
from phonemizer.separator import Separator
class TextTokenizer:
"""Phonemize Text."""
def __init__(
self,
language="en-us",
backend="espeak",
separator=Separator(word="_", syllable="-", phone="|"),
preserve_punctuation=True,
punctuation_marks: Union[str, Pattern] = Punctuation.default_marks(),
with_stress: bool = False,
tie: Union[bool, str] = False,
language_switch: LanguageSwitch = "keep-flags",
words_mismatch: WordMismatch = "ignore",
) -> None:
phonemizer = EspeakBackend(
language,
punctuation_marks=punctuation_marks,
preserve_punctuation=preserve_punctuation,
with_stress=with_stress,
tie=tie,
language_switch=language_switch,
words_mismatch=words_mismatch,
)
self.backend = phonemizer
self.separator = separator
def to_list(self, phonemized: str) -> List[str]:
fields = []
for word in phonemized.split(self.separator.word):
# "ɐ m|iː|n?" ɹ|ɪ|z|ɜː|v; h|ɪ|z.
pp = re.findall(r"\w+|[^\w\s]", word, re.UNICODE)
fields.extend(
[p for p in pp if p != self.separator.phone]
+ [self.separator.word]
)
assert len("".join(fields[:-1])) == len(phonemized) - phonemized.count(
self.separator.phone
)
return fields[:-1]
def __call__(self, text, strip=True) -> List[List[str]]:
if isinstance(text, str):
text = [text]
phonemized = self.backend.phonemize(
text, separator=self.separator, strip=strip, njobs=1
)
return [self.to_list(p) for p in phonemized]
def tokenize_text(tokenizer: TextTokenizer, text: str) -> List[str]:
phonemes = tokenizer([text.strip()])
return phonemes[0] # k2symbols
def convert_audio(wav: torch.Tensor, sr: int, target_sr: int, target_channels: int):
assert wav.shape[0] in [1, 2], "Audio must be mono or stereo."
if target_channels == 1:
wav = wav.mean(0, keepdim=True)
elif target_channels == 2:
*shape, _, length = wav.shape
wav = wav.expand(*shape, target_channels, length)
elif wav.shape[0] == 1:
wav = wav.expand(target_channels, -1)
wav = torchaudio.transforms.Resample(sr, target_sr)(wav)
return wav
class AudioTokenizer:
"""EnCodec audio."""
def __init__(
self,
device: Any = None,
signature = None
) -> None:
from audiocraft.solvers import CompressionSolver
model = CompressionSolver.model_from_checkpoint(signature)
self.sample_rate = model.sample_rate
self.channels = model.channels
if not device:
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda:0")
self._device = device
self.codec = model.to(device)
@property
def device(self):
return self._device
def encode(self, wav: torch.Tensor) -> torch.Tensor:
codes = self.codec.encode(wav.to(self.device))
return [(codes[0], None)]
def decode(self, frames: torch.Tensor) -> torch.Tensor:
frames = frames[0][0] # [1,4,T]
return self.codec.decode(frames)
def tokenize_audio(tokenizer: AudioTokenizer, audio_path: str, offset = -1, num_frames=-1):
# Load and pre-process the audio waveform
if offset != -1 and num_frames!=-1:
wav, sr = torchaudio.load(audio_path, frame_offset=offset, num_frames=num_frames)
else:
wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, tokenizer.sample_rate, tokenizer.channels)
wav = wav.unsqueeze(0)
# Extract discrete codes from EnCodec
with torch.no_grad():
encoded_frames = tokenizer.encode(wav)
return encoded_frames