Spaces:
Build error
Build error
File size: 12,001 Bytes
b971d47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import argparse
def parse_args():
parser = argparse.ArgumentParser(description="encode the librilight dataset using encodec model")
parser.add_argument("--dataset_size", type=str, default='xs', help='sizes of gigaspeech, xs, s, m, l, xl. we use xl for VoiceCraft training, xs is good for debugging')
parser.add_argument('--download_to', type=str, default="/data/scratch/pyp/datasets/gigaspeech_debug", help="dir where you want the huggingface gigaspeech dataset to be downloaded to")
parser.add_argument('--save_dir', type=str, default="/data/scratch/pyp/datasets/gigaspeech_phn_enc_manifest_debug", help="path to the manifest, phonemes, and encodec codes dirs")
parser.add_argument('--encodec_model_path', type=str, default="/data/scratch/pyp/exp_pyp/audiocraft/encodec/xps/6f79c6a8/checkpoint.th")
parser.add_argument('--n_workers', type=int, default=4, help="Number of parallel worker processes")
parser.add_argument('--mega_batch_size', type=int, default=100, help="Number of samples in each mega batch for multiprocess dataloading")
parser.add_argument('--batch_size', type=int, default=4, help="batch size for encodec encoding, decrease it if OOM. This is the sum of batch size *over each gpu*, so increase it if you are using more gpus")
parser.add_argument('--model_sr', type=int, default=16000, help='encodec input audio sample rate')
parser.add_argument('--downsample_rate', type=int, default=320, help='encodec downsample rate')
parser.add_argument('--model_code_sr', type=int, default=50, help='encodec model code sample rate')
parser.add_argument('--len_cap', type=float, default=35.0, help='will drop audios that are longer than this number')
parser.add_argument('--max_len', type=int, default=30000, help='max length of audio in samples, if exceed, will cut a batch into half to process, decrease this number if OOM on your machine')
return parser.parse_args()
if __name__ == "__main__":
import logging
formatter = (
"%(asctime)s [%(levelname)s] %(filename)s:%(lineno)d || %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
args = parse_args()
import os
import numpy as np
import torch
import tqdm
import time
from datasets import load_dataset, DownloadConfig
from tokenizer import TextTokenizer, tokenize_text
# get the path
phn_save_root = os.path.join(args.save_dir, args.dataset_size, "phonemes")
codes_save_root = os.path.join(args.save_dir, args.dataset_size, "encodec_16khz_4codebooks")
vocab_fn = os.path.join(args.save_dir, args.dataset_size, "vocab.txt")
os.makedirs(phn_save_root, exist_ok=True)
os.makedirs(codes_save_root, exist_ok=True)
def sort_by_audio_len(lens):
inds = np.argsort(lens).tolist()
logging.info(f"longest: {lens[inds[-1]]*args.model_code_sr} encodec codes, {lens[inds[-1]]:.2f} sec.")
logging.info(f"shortest: {lens[inds[0]]*args.model_code_sr} encodec codes, {lens[inds[0]]:.2f} sec.")
logging.info(f"median: {lens[inds[len(inds)//2]]*args.model_code_sr} encodec codes, {lens[inds[len(inds)//2]]:.2f} sec.")
logging.info(f"95 percentile longest: {lens[inds[int(len(inds)*0.95)]]*args.model_code_sr} encodec codes, {lens[inds[int(len(inds)*0.95)]]:.2f} sec.")
return inds[::-1]
def write_array_to_txt_file(array, filename):
with open(filename, 'w') as f:
for a in array[:-1]:
f.write(' '.join(map(str, a))+'\n')
f.write(' '.join(map(str, array[-1])))
### phonemization
# load tokenizer
# load the encodec model
from audiocraft.solvers import CompressionSolver
model = CompressionSolver.model_from_checkpoint(args.encodec_model_path)
model = model.cuda()
model = model.eval()
text_tokenizer = TextTokenizer()
# https://github.com/SpeechColab/GigaSpeech
# there are only four different punctuations
# need to check whether there are other < started strings
punc2sym = {" <COMMA>": ",", " <PERIOD>": ".", " <QUESTIONMARK>": "?", " <EXCLAMATIONPOINT>": "!"} # note the space in front of each punc name
gar2sym = {"<SIL>": "#%#", "<MUSIC>": "##%", "<NOISE>": "%%#", "<OTHER>":"%#%"} # so that they are savely keep as the original sym when using tokenize_text
punc2sym.update(gar2sym)
word2sym = { "h æ ʃ h ɐ ʃ p ɚ s ɛ n t": "<MUSIC>", "h æ ʃ p ɚ s ɛ n t h æ ʃ": "<SIL>", "p ɚ s ɛ n t h ɐ ʃ p ɚ s ɛ n t": "<OTHER>", "p ɚ s ɛ n t p ɚ s ɛ n t h æ ʃ": "<NOISE>"}
forbidden_words = set(['#%#', '##%', '%%#', '%#%'])
dc = DownloadConfig(cache_dir=args.download_to)
stime = time.time()
logging.info("loading the dataset...")
gs = load_dataset("speechcolab/gigaspeech", args.dataset_size, use_auth_token=True, cache_dir = args.download_to, download_config=dc)
logging.info(f"time spend on loading the dataset: {time.time() - stime:.2f} seconds")
splits = ['validation', 'test', 'train']
logging.info(f"gigaspeech dataset {args.dataset_size} info: {gs}")
logging.info(f"phonemizing...")
phn_vocab = set()
all_lens = []
# you will see a ton of [WARNING] words_mismatch.py:88......, it's not a issue
for split in tqdm.tqdm(splits):
skip = 0
logging.info(f"now processing split {split}...")
for item in tqdm.tqdm(gs[split]):
save_fn = os.path.join(phn_save_root, item['segment_id']+".txt")
text = item['text']
if sum(word in forbidden_words for word in text.split(" ")):
logging.info(f"skip {item['segment_id']}, because it contains forbiden words. It's transcript: {text}")
skip += 1
continue
for k, v in punc2sym.items():
text = text.replace(k, v)
phn = tokenize_text(text_tokenizer, text)
phn_seq = " ".join(phn)
for k, v in word2sym.items():
phn_seq = phn_seq.replace(k, v)
phn_vocab.update(phn_seq.split(" "))
all_lens.append(len(phn_seq.split(" ")))
with open(save_fn, "w") as f:
f.write(phn_seq)
logging.info(f"split {split} has {len(gs[split])} samples in total, skipped {skip} due to forbiden words")
print(f"phn vocab size: {len(list(phn_vocab))}")
print("phn sequence stats: ")
print(f"longest: {max(all_lens)}")
print(f"shortest: {min(all_lens)}")
print(f"median: {np.quantile(all_lens, 0.5)}")
print(f"95 percentile longest: {np.quantile(all_lens, 0.95)}")
print("write vocabulary to ", vocab_fn)
with open(vocab_fn, "w") as f:
for i, phn in enumerate(list(phn_vocab)):
if i < len(list(phn_vocab)) - 1:
f.write(f"{str(i)} {phn}\n")
else:
f.write(f"{str(i)} {phn}")
class mydataset(torch.utils.data.Dataset):
def __init__(self, split):
super().__init__()
self.data = gs[split]
def __len__(self):
return len(self.data)
def __getitem__(self, ind):
try:
segment_id, audio, sr, text, begin_time, end_time = self.data[ind]['segment_id'], torch.from_numpy(self.data[ind]['audio']['array']).float(), self.data[ind]['audio']['sampling_rate'], self.data[ind]['text'], self.data[ind]['begin_time'], self.data[ind]['end_time']
except:
return None, None, None, None, None, None
return segment_id, audio, sr, text, begin_time, end_time
def collate(self, batch):
res = {'segment_id': [], "audio": [], "sr": [], "text": [], "begin_time": [], "end_time": []}
for item in batch:
if item[0] != None:
res['segment_id'].append(item[0])
res['audio'].append(item[1])
res['sr'].append(item[2])
res['text'].append(item[3])
res['begin_time'].append(item[4])
res['end_time'].append(item[5])
return res
## encodec codes extraction
logging.info("encodec encoding...")
train_dataset = mydataset('train')
train_loader = torch.torch.utils.data.DataLoader(train_dataset, batch_size=args.mega_batch_size, shuffle=False, drop_last=False, num_workers=args.n_workers, collate_fn=train_dataset.collate)
validation_dataset = mydataset('validation')
validation_loader = torch.torch.utils.data.DataLoader(validation_dataset, batch_size=args.mega_batch_size, shuffle=False, drop_last=False, num_workers=args.n_workers, collate_fn=validation_dataset.collate)
test_dataset = mydataset('test')
test_loader = torch.torch.utils.data.DataLoader(test_dataset, batch_size=args.mega_batch_size, shuffle=False, drop_last=False, num_workers=args.n_workers, collate_fn=test_dataset.collate)
splits = ['validation', 'test', 'train']
loaders = [validation_loader, test_loader, train_loader]
# splits = ['validation'] # for debug
# loaders = [validation_loader]
for split, loader in zip(splits, loaders):
skip = 0
logging.info(f"now processing split {split}...")
mega_n_steps = int(np.ceil(len(gs[split]) / args.mega_batch_size))
logging.info(f"partition the split {split} into {mega_n_steps} parts, each has {args.mega_batch_size} samples")
for m, mega_batch in enumerate(loader):
logging.info(f"====================================")
logging.info(f"====================================")
logging.info(f"now processing mega step {m+1}/{mega_n_steps}")
lengths = np.array(mega_batch['end_time']) - np.array(mega_batch['begin_time'])
sorted_inds = sort_by_audio_len(lengths)
for j in range(len(sorted_inds))[::-1]:
if lengths[sorted_inds[j]] < 0.2 or lengths[sorted_inds[j]] > args.len_cap: # skip samples that are too short (shorter than 0.2s), or too big (bigger than 80s)
skip += 1
del sorted_inds[j]
n_steps = int(np.ceil(len(sorted_inds) / args.batch_size))
for n in tqdm.tqdm(range(n_steps), disable=True):
inds_used = sorted_inds[n*args.batch_size:(n+1)*args.batch_size]
audio_batch = [mega_batch['audio'][id] for id in inds_used]
sr_batch = [mega_batch['sr'][id] for id in inds_used]
segment_id_batch = [mega_batch['segment_id'][id] for id in inds_used]
text_batch = [mega_batch['text'][id] for id in inds_used]
padded_wav = torch.nn.utils.rnn.pad_sequence(audio_batch, batch_first=True).unsqueeze(1) # [B, T] -> [B, 1, T]
all_lens = [lengths[id] for id in inds_used]
with torch.no_grad():
if max(all_lens) > args.max_len and len(all_lens) > 1: # NOTE decrease args.max_len if OOM, or chunk it into more than 2 forward passes
codes = []
inwav = padded_wav.cuda()
codes.append(model.encode(inwav[:len(inwav)//2])[0].cpu())
codes.append(model.encode(inwav[len(inwav)//2:])[0].cpu())
codes = torch.cat(codes, dim=0)
else:
encoded_frames = model.encode(padded_wav.cuda())
# logging.info(f"encoded_frames: {encoded_frames[0].shape}")
codes = encoded_frames[0].cpu()
for i, length in enumerate(all_lens):
save_fn = os.path.join(codes_save_root, segment_id_batch[i]+".txt")
actual_len = round(length * args.model_code_sr) # 320 is downsample rate for this model
cur_code = codes[i].tolist() if type(codes) == list else codes[i, :, :actual_len].tolist()
write_array_to_txt_file(cur_code, save_fn)
|