Spaces:
Build error
Build error
File size: 10,434 Bytes
b971d47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import argparse, pickle
import logging
import os, random
import numpy as np
import torch
import torchaudio
from data.tokenizer import (
AudioTokenizer,
TextTokenizer,
tokenize_audio,
tokenize_text
)
from models import voicecraft
import argparse, time, tqdm
# this script only works for the musicgen architecture
def get_args():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--manifest_fn", type=str, default="path/to/eval_metadata_file")
parser.add_argument("--audio_root", type=str, default="path/to/audio_folder")
parser.add_argument("--exp_dir", type=str, default="path/to/model_folder")
parser.add_argument("--left_margin", type=float, default=0.08, help="extra space on the left to the word boundary")
parser.add_argument("--right_margin", type=float, default=0.08, help="extra space on the right to the word boundary")
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--codec_audio_sr", type=int, default=16000, help='the sample rate of audio that the codec is trained for')
parser.add_argument("--codec_sr", type=int, default=50, help='the sample rate of the codec codes')
parser.add_argument("--top_k", type=int, default=-1, help="sampling param")
parser.add_argument("--top_p", type=float, default=0.8, help="sampling param")
parser.add_argument("--temperature", type=float, default=1.0, help="sampling param")
parser.add_argument("--output_dir", type=str, default=None)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--signature", type=str, default=None, help="path to the encodec model")
parser.add_argument("--stop_repetition", type=int, default=2, help="used for inference, when the number of consecutive repetition of a token is bigger than this, stop it")
parser.add_argument("--kvcache", type=int, default=1, help='if true, use kv cache, which is 4-8x faster than without')
parser.add_argument("--silence_tokens", type=str, default="[1388,1898,131]", help="note that if you are not using the pretrained encodec 6f79c6a8, make sure you specified it yourself, rather than using the default")
return parser.parse_args()
@torch.no_grad()
def inference_one_sample(model, model_args, phn2num, text_tokenizer, audio_tokenizer, audio_fn, target_text, mask_interval, device, decode_config):
# phonemize
text_tokens = [phn2num[phn] for phn in
tokenize_text(
text_tokenizer, text=target_text.strip()
) if phn in phn2num
]
text_tokens = torch.LongTensor(text_tokens).unsqueeze(0)
text_tokens_lens = torch.LongTensor([text_tokens.shape[-1]])
encoded_frames = tokenize_audio(audio_tokenizer, audio_fn)
original_audio = encoded_frames[0][0].transpose(2,1) # [1,T,K]
assert original_audio.ndim==3 and original_audio.shape[0] == 1 and original_audio.shape[2] == model_args.n_codebooks, original_audio.shape
logging.info(f"with direct encodec encoding before input, original audio length: {original_audio.shape[1]} codec frames, which is {original_audio.shape[1]/decode_config['codec_sr']:.2f} sec.")
# forward
stime = time.time()
encoded_frames = model.inference(
text_tokens.to(device),
text_tokens_lens.to(device),
original_audio[...,:model_args.n_codebooks].to(device), # [1,T,8]
mask_interval=mask_interval.unsqueeze(0).to(device),
top_k=decode_config['top_k'],
top_p=decode_config['top_p'],
temperature=decode_config['temperature'],
stop_repetition=decode_config['stop_repetition'],
kvcache=decode_config['kvcache'],
silence_tokens=eval(decode_config['silence_tokens']) if type(decode_config['silence_tokens']) == str else decode_config['silence_tokens'],
) # output is [1,K,T]
logging.info(f"inference on one sample take: {time.time() - stime:.4f} sec.")
if type(encoded_frames) == tuple:
encoded_frames = encoded_frames[0]
logging.info(f"generated encoded_frames.shape: {encoded_frames.shape}, which is {encoded_frames.shape[-1]/decode_config['codec_sr']} sec.")
# decode (both original and generated)
original_sample = audio_tokenizer.decode(
[(original_audio.transpose(2,1), None)] # [1,T,8] -> [1,8,T]
)
generated_sample = audio_tokenizer.decode(
[(encoded_frames, None)]
)
return original_sample, generated_sample
def get_model(exp_dir, device=None):
with open(os.path.join(exp_dir, "args.pkl"), "rb") as f:
model_args = pickle.load(f)
logging.info("load model weights...")
model = voicecraft.VoiceCraft(model_args)
ckpt_fn = os.path.join(exp_dir, "best_bundle.pth")
ckpt = torch.load(ckpt_fn, map_location='cpu')['model']
phn2num = torch.load(ckpt_fn, map_location='cpu')['phn2num']
model.load_state_dict(ckpt)
del ckpt
logging.info("done loading weights...")
if device == None:
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda:0")
model.to(device)
model.eval()
return model, model_args, phn2num
def get_mask_interval(ali_fn, word_span_ind, editType):
with open(ali_fn, "r") as rf:
data = [l.strip().split(",") for l in rf.readlines()]
data = data[1:]
tmp = word_span_ind.split(",")
s, e = int(tmp[0]), int(tmp[-1])
start = None
for j, item in enumerate(data):
if j == s and item[3] == "words":
if editType == 'insertion':
start = float(item[1])
else:
start = float(item[0])
if j == e and item[3] == "words":
if editType == 'insertion':
end = float(item[0])
else:
end = float(item[1])
assert start != None
break
return (start, end)
if __name__ == "__main__":
def seed_everything(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
formatter = (
"%(asctime)s [%(levelname)s] %(filename)s:%(lineno)d || %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
# args.device = 'cpu'
args.allowed_repeat_tokens = eval(args.allowed_repeat_tokens)
seed_everything(args.seed)
# load model
stime = time.time()
logging.info(f"loading model from {args.exp_dir}")
model, model_args, phn2num = get_model(args.exp_dir)
if not os.path.isfile(model_args.exp_dir):
model_args.exp_dir = args.exp_dir
logging.info(f"loading model done, took {time.time() - stime:.4f} sec")
# setup text and audio tokenizer
text_tokenizer = TextTokenizer(backend="espeak")
audio_tokenizer = AudioTokenizer(signature=args.signature) # will also put the neural codec model on gpu
with open(args.manifest_fn, "r") as rf:
manifest = [l.strip().split("\t") for l in rf.readlines()]
manifest = manifest[1:]
# wav_fn txt_fn alingment_fn num_words word_span_ind
audio_fns = []
target_texts = []
mask_intervals = []
edit_types = []
new_spans = []
orig_spans = []
os.makedirs(args.output_dir, exist_ok=True)
if args.crop_concat:
mfa_temp = f"{args.output_dir}/mfa_temp"
os.makedirs(mfa_temp, exist_ok=True)
for item in manifest:
audio_fn = os.path.join(args.audio_root, item[0])
temp = torchaudio.info(audio_fn)
audio_dur = temp.num_frames/temp.sample_rate
audio_fns.append(audio_fn)
target_text = item[2].split("|")[-1]
edit_types.append(item[5].split("|"))
new_spans.append(item[4].split("|"))
orig_spans.append(item[3].split("|"))
target_texts.append(target_text) # the last transcript is the target
# mi needs to be created from word_ind_span and alignment_fn, along with args.left_margin and args.right_margin
mis = []
all_ind_intervals = item[3].split("|")
editTypes = item[5].split("|")
smaller_indx = []
alignment_fn = os.path.join(args.audio_root, "aligned", item[0].replace(".wav", ".csv"))
if not os.path.isfile(alignment_fn):
alignment_fn = alignment_fn.replace("/aligned/", "/aligned_csv/")
assert os.path.isfile(alignment_fn), alignment_fn
for ind_inter,editType in zip(all_ind_intervals, editTypes):
# print(ind_inter)
mi = get_mask_interval(alignment_fn, ind_inter, editType)
mi = (max(mi[0] - args.left_margin, 1/args.codec_sr), min(mi[1] + args.right_margin, audio_dur)) # in seconds
mis.append(mi)
smaller_indx.append(mi[0])
ind = np.argsort(smaller_indx)
mis = [mis[id] for id in ind]
mask_intervals.append(mis)
for i, (audio_fn, target_text, mask_interval) in enumerate(tqdm.tqdm(zip(audio_fns, target_texts, mask_intervals))):
orig_mask_interval = mask_interval
mask_interval = [[round(cmi[0]*args.codec_sr), round(cmi[1]*args.codec_sr)] for cmi in mask_interval]
# logging.info(f"i: {i}, mask_interval: {mask_interval}")
mask_interval = torch.LongTensor(mask_interval) # [M,2]
orig_audio, new_audio = inference_one_sample(model, model_args, phn2num, text_tokenizer, audio_tokenizer, audio_fn, target_text, mask_interval, args.device, vars(args))
# save segments for comparison
orig_audio, new_audio = orig_audio[0].cpu(), new_audio[0].cpu()
# logging.info(f"length of the resynthesize orig audio: {orig_audio.shape}")
save_fn_new = f"{args.output_dir}/{os.path.basename(audio_fn)[:-4]}_new_seed{args.seed}.wav"
torchaudio.save(save_fn_new, new_audio, args.codec_audio_sr)
save_fn_orig = f"{args.output_dir}/{os.path.basename(audio_fn)[:-4]}_orig.wav"
if not os.path.isfile(save_fn_orig):
orig_audio, orig_sr = torchaudio.load(audio_fn)
if orig_sr != args.codec_audio_sr:
orig_audio = torchaudio.transforms.Resample(orig_sr, args.codec_audio_sr)(orig_audio)
torchaudio.save(save_fn_orig, orig_audio, args.codec_audio_sr)
|