RealChar / realtime_ai_character /websocket_routes.py
pycui's picture
Add RealChar deployment for HuggingFace (V0)
babeaf6
raw
history blame
12.5 kB
import asyncio
import os
import uuid
from fastapi import APIRouter, Depends, HTTPException, Path, WebSocket, WebSocketDisconnect, Query
from firebase_admin import auth
from firebase_admin.exceptions import FirebaseError
from requests import Session
from realtime_ai_character.audio.speech_to_text import (SpeechToText,
get_speech_to_text)
from realtime_ai_character.audio.text_to_speech import (TextToSpeech,
get_text_to_speech)
from realtime_ai_character.character_catalog.catalog_manager import (
CatalogManager, get_catalog_manager)
from realtime_ai_character.database.connection import get_db
from realtime_ai_character.llm import (AsyncCallbackAudioHandler,
AsyncCallbackTextHandler, get_llm, LLM)
from realtime_ai_character.logger import get_logger
from realtime_ai_character.models.interaction import Interaction
from realtime_ai_character.utils import (ConversationHistory, build_history,
get_connection_manager)
logger = get_logger(__name__)
router = APIRouter()
manager = get_connection_manager()
GREETING_TXT = 'Hi, my friend, what brings you here today?'
async def get_current_user(token: str):
"""Heler function for auth with Firebase."""
if not token:
return ""
try:
decoded_token = auth.verify_id_token(token)
except FirebaseError as e:
logger.info(f'Receveid invalid token: {token} with error {e}')
raise HTTPException(status_code=401,
detail="Invalid authentication credentials")
return decoded_token['uid']
@router.websocket("/ws/{client_id}")
async def websocket_endpoint(websocket: WebSocket,
client_id: int = Path(...),
api_key: str = Query(None),
llm_model: str = Query(default=os.getenv(
'LLM_MODEL_USE', 'gpt-3.5-turbo-16k')),
token: str = Query(None),
db: Session = Depends(get_db),
catalog_manager=Depends(get_catalog_manager),
speech_to_text=Depends(get_speech_to_text),
text_to_speech=Depends(get_text_to_speech)):
# Default user_id to client_id. If auth is enabled and token is provided, use
# the user_id from the token.
user_id = str(client_id)
if os.getenv('USE_AUTH', ''):
# Do not allow anonymous users to use non-GPT3.5 model.
if not token and llm_model != 'gpt-3.5-turbo-16k':
await websocket.close(code=1008, reason="Unauthorized")
return
try:
user_id = await get_current_user(token)
except HTTPException:
await websocket.close(code=1008, reason="Unauthorized")
return
llm = get_llm(model=llm_model)
await manager.connect(websocket)
try:
main_task = asyncio.create_task(
handle_receive(websocket, client_id, db, llm, catalog_manager,
speech_to_text, text_to_speech))
await asyncio.gather(main_task)
except WebSocketDisconnect:
await manager.disconnect(websocket)
await manager.broadcast_message(f"User #{user_id} left the chat")
async def handle_receive(websocket: WebSocket, client_id: int, db: Session,
llm: LLM, catalog_manager: CatalogManager,
speech_to_text: SpeechToText,
text_to_speech: TextToSpeech):
try:
conversation_history = ConversationHistory()
# TODO: clean up client_id once migration is done.
user_id = str(client_id)
session_id = str(uuid.uuid4().hex)
# 0. Receive client platform info (web, mobile, terminal)
data = await websocket.receive()
if data['type'] != 'websocket.receive':
raise WebSocketDisconnect('disconnected')
platform = data['text']
logger.info(f"User #{user_id}:{platform} connected to server with "
f"session_id {session_id}")
# 1. User selected a character
character = None
character_list = list(catalog_manager.characters.keys())
user_input_template = 'Context:{context}\n User:{query}'
while not character:
character_message = "\n".join([
f"{i+1} - {character}"
for i, character in enumerate(character_list)
])
await manager.send_message(
message=
f"Select your character by entering the corresponding number:\n"
f"{character_message}\n",
websocket=websocket)
data = await websocket.receive()
if data['type'] != 'websocket.receive':
raise WebSocketDisconnect('disconnected')
if not character and 'text' in data:
selection = int(data['text'])
if selection > len(character_list) or selection < 1:
await manager.send_message(
message=
f"Invalid selection. Select your character ["
f"{', '.join(catalog_manager.characters.keys())}]\n",
websocket=websocket)
continue
character = catalog_manager.get_character(
character_list[selection - 1])
conversation_history.system_prompt = character.llm_system_prompt
user_input_template = character.llm_user_prompt
logger.info(
f"User #{user_id} selected character: {character.name}")
tts_event = asyncio.Event()
tts_task = None
previous_transcript = None
token_buffer = []
# Greet the user
await manager.send_message(message=GREETING_TXT, websocket=websocket)
tts_task = asyncio.create_task(
text_to_speech.stream(
text=GREETING_TXT,
websocket=websocket,
tts_event=tts_event,
characater_name=character.name,
first_sentence=True,
))
# Send end of the greeting so the client knows when to start listening
await manager.send_message(message='[end]\n', websocket=websocket)
async def on_new_token(token):
return await manager.send_message(message=token,
websocket=websocket)
async def stop_audio():
if tts_task and not tts_task.done():
tts_event.set()
tts_task.cancel()
if previous_transcript:
conversation_history.user.append(previous_transcript)
conversation_history.ai.append(' '.join(token_buffer))
token_buffer.clear()
try:
await tts_task
except asyncio.CancelledError:
pass
tts_event.clear()
while True:
data = await websocket.receive()
if data['type'] != 'websocket.receive':
raise WebSocketDisconnect('disconnected')
# handle text message
if 'text' in data:
msg_data = data['text']
# 0. itermidiate transcript starts with [&]
if msg_data.startswith('[&]'):
logger.info(f'intermediate transcript: {msg_data}')
if not os.getenv('EXPERIMENT_CONVERSATION_UTTERANCE', ''):
continue
asyncio.create_task(stop_audio())
asyncio.create_task(
llm.achat_utterances(
history=build_history(conversation_history),
user_input=msg_data,
callback=AsyncCallbackTextHandler(
on_new_token, []),
audioCallback=AsyncCallbackAudioHandler(
text_to_speech, websocket, tts_event,
character.name)))
continue
# 1. Send message to LLM
print('response = await llm.achat, user_input', msg_data)
response = await llm.achat(
history=build_history(conversation_history),
user_input=msg_data,
user_input_template=user_input_template,
callback=AsyncCallbackTextHandler(on_new_token,
token_buffer),
audioCallback=AsyncCallbackAudioHandler(
text_to_speech, websocket, tts_event, character.name),
character=character)
# 2. Send response to client
await manager.send_message(message='[end]\n',
websocket=websocket)
# 3. Update conversation history
conversation_history.user.append(msg_data)
conversation_history.ai.append(response)
token_buffer.clear()
# 4. Persist interaction in the database
Interaction(client_id=client_id,
user_id=user_id,
session_id=session_id,
client_message_unicode=msg_data,
server_message_unicode=response,
platform=platform,
action_type='text').save(db)
# handle binary message(audio)
elif 'bytes' in data:
binary_data = data['bytes']
# 1. Transcribe audio
transcript: str = speech_to_text.transcribe(
binary_data, platform=platform,
prompt=character.name).strip()
# ignore audio that picks up background noise
if (not transcript or len(transcript) < 2):
continue
# 2. Send transcript to client
await manager.send_message(
message=f'[+]You said: {transcript}', websocket=websocket)
# 3. stop the previous audio stream, if new transcript is received
await stop_audio()
previous_transcript = transcript
async def tts_task_done_call_back(response):
# Send response to client, [=] indicates the response is done
await manager.send_message(message='[=]',
websocket=websocket)
# Update conversation history
conversation_history.user.append(transcript)
conversation_history.ai.append(response)
token_buffer.clear()
# Persist interaction in the database
Interaction(client_id=client_id,
user_id=user_id,
session_id=session_id,
client_message_unicode=transcript,
server_message_unicode=response,
platform=platform,
action_type='audio').save(db)
# 4. Send message to LLM
tts_task = asyncio.create_task(
llm.achat(history=build_history(conversation_history),
user_input=transcript,
user_input_template=user_input_template,
callback=AsyncCallbackTextHandler(
on_new_token, token_buffer,
tts_task_done_call_back),
audioCallback=AsyncCallbackAudioHandler(
text_to_speech, websocket, tts_event,
character.name),
character=character))
except WebSocketDisconnect:
logger.info(f"User #{user_id} closed the connection")
await manager.disconnect(websocket)
return