seriouspark commited on
Commit
c638b7d
โ€ข
1 Parent(s): dc66c9b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -40
app.py CHANGED
@@ -39,38 +39,6 @@ def get_sent_labeldata():
39
  idx2emo = {v : k[1] for k, v in emo2idx.items()}
40
  return emo2idx, idx2emo
41
 
42
- # def load_model():
43
-
44
- # class BertClassifier(nn.Module):
45
-
46
- # def __init__(self, dropout = 0.3):
47
- # super(BertClassifier, self).__init__()
48
-
49
- # self.bert= BertModel.from_pretrained('bert-base-multilingual-cased')
50
- # self.dropout = nn.Dropout(dropout)
51
- # self.linear = nn.Linear(768, 6)
52
- # self.relu = nn.ReLU()
53
-
54
- # def forward(self, input_id, mask):
55
- # _, pooled_output = self.bert(input_ids = input_id, attention_mask = mask, return_dict = False)
56
- # dropout_output = self.dropout(pooled_output)
57
- # linear_output = self.linear(dropout_output)
58
- # final_layer= self.relu(linear_output)
59
-
60
- # return final_layer
61
-
62
-
63
- # tokenizer = AutoTokenizer.from_pretrained('bert-base-multilingual-cased')
64
- # device = 'cuda' if torch.cuda.is_available() else 'cpu'
65
- # cls_model = BertClassifier()
66
- # criterion = nn.CrossEntropyLoss()
67
- # model_name = 'bert-base-multilingual-cased'
68
- # PATH = './model' + '/' + model_name + '_' + '2023102410'
69
- # print(PATH)
70
- # cls_model = torch.load(PATH)
71
- # #cls_model.load_state_dict(torch.load(PATH))
72
- # return tokenizer, cls_model
73
-
74
 
75
  class myDataset_for_infer(torch.utils.data.Dataset):
76
  def __init__(self, X):
@@ -254,17 +222,13 @@ def all_process(origin_essay):
254
  import gradio as gr
255
  outputs = [gr.Dataframe(row_count = (6, "dynamic"),
256
  col_count=(2, "dynamic"),
257
- label="Essay Summary based on Words")
 
 
258
  #headers=['type','word','์Šฌํ””', '๋ถ„๋…ธ', '๊ธฐ์จ', '๋ถˆ์•ˆ', '์ƒ์ฒ˜', '๋‹นํ™ฉ', 'total'])
259
 
260
  ]
261
-
262
-
263
- #row_count = (10, "dynamic"),
264
- #col_count=(9, "dynamic"),
265
- #label="Results",
266
- #headers=['type','word','์Šฌํ””', '๋ถ„๋…ธ', '๊ธฐ์จ', '๋ถˆ์•ˆ', '์ƒ์ฒ˜', '๋‹นํ™ฉ', 'total'])
267
- #]
268
 
269
  iface = gr.Interface(
270
  fn=all_process,
 
39
  idx2emo = {v : k[1] for k, v in emo2idx.items()}
40
  return emo2idx, idx2emo
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  class myDataset_for_infer(torch.utils.data.Dataset):
44
  def __init__(self, X):
 
222
  import gradio as gr
223
  outputs = [gr.Dataframe(row_count = (6, "dynamic"),
224
  col_count=(2, "dynamic"),
225
+ label="Essay Summary based on Words"),
226
+ title = 'MooGeulMooGeul'
227
+
228
  #headers=['type','word','์Šฌํ””', '๋ถ„๋…ธ', '๊ธฐ์จ', '๋ถˆ์•ˆ', '์ƒ์ฒ˜', '๋‹นํ™ฉ', 'total'])
229
 
230
  ]
231
+
 
 
 
 
 
 
232
 
233
  iface = gr.Interface(
234
  fn=all_process,