File size: 11,381 Bytes
ba79e72
 
 
 
 
 
 
 
 
 
 
f1145a6
ba79e72
 
 
0b9acb3
ba79e72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32653f7
ba79e72
80ae5a7
ba79e72
 
 
 
 
 
 
 
 
 
 
80ae5a7
ba79e72
 
 
 
 
 
 
 
 
 
 
32653f7
ba79e72
e8ccc6c
ba79e72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b9acb3
 
 
ba79e72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b70a00f
ba79e72
80ae5a7
ba79e72
e38fd70
ba79e72
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import datetime 
import numpy as np
import pandas as pd
import re
import json
import os
import glob

import torch
import torch.nn.functional as F
from torch.optim import Adam
from tqdm import tqdm
from torch import nn
from transformers import BertModel

from transformers import AutoTokenizer, AutoModelForSequenceClassification

import argparse

def split_essay_to_sentence(origin_essay):
    origin_essay_sentence = sum([[a.strip() for a in i.split('.')] for i in origin_essay.split('\n')], [])
    essay_sent = [a for a in origin_essay_sentence if len(a) > 0]
    return essay_sent

def get_first_extraction(text_sentence):
    row_dict = {}
    for row in tqdm(text_sentence):
        question = 'what is the feeling?'
        answer = question_answerer(question=question, context=row)
        row_dict[row] = answer
    return row_dict


def get_sent_labeldata():
    label =pd.read_csv('./rawdata/sentimental_label.csv', encoding = 'cp949', header = None)
    label[1] = label[1].apply(lambda x : re.findall(r'[๊ฐ€-ํžฃ]+', x)[0])
    label_dict =label[label.index % 10 == 0].set_index(0).to_dict()[1]
    emo2idx = {v : k for k, v in enumerate(label_dict.items())}
    idx2emo = {v : k[1] for k, v in emo2idx.items()}
    return emo2idx, idx2emo

def load_model():
    
    class BertClassifier(nn.Module):

        def __init__(self, dropout = 0.3):
            super(BertClassifier, self).__init__()

            self.bert= BertModel.from_pretrained('bert-base-multilingual-cased')
            self.dropout = nn.Dropout(dropout)
            self.linear = nn.Linear(768, 6)
            self.relu = nn.ReLU()

        def forward(self, input_id, mask):
            _, pooled_output = self.bert(input_ids = input_id, attention_mask = mask, return_dict = False)
            dropout_output = self.dropout(pooled_output)
            linear_output = self.linear(dropout_output)
            final_layer= self.relu(linear_output)

            return final_layer


    tokenizer = AutoTokenizer.from_pretrained('bert-base-multilingual-cased')
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    cls_model = BertClassifier()
    criterion = nn.CrossEntropyLoss()
    model_name = 'bert-base-multilingual-cased'
    PATH = './model' + '/' + model_name + '_' + '2023102410'
    print(PATH)
    cls_model = torch.load(PATH)
    #cls_model.load_state_dict(torch.load(PATH))
    return tokenizer, cls_model


class myDataset_for_infer(torch.utils.data.Dataset):
    def __init__(self, X):
        self.X = X

    def __len__(self):
        return len(self.X)

    def __getitem__(self,idx):
        sentences =  tokenizer(self.X[idx], return_tensors = 'pt', padding = 'max_length', max_length = 128, truncation = True)
        return sentences
    
    
def infer_data(model, main_feeling_keyword):
    #ds = myDataset_for_infer()
    df_infer = myDataset_for_infer(main_feeling_keyword)

    infer_dataloader = torch.utils.data.DataLoader(df_infer, batch_size= 16)
    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    if device == 'cuda':
        model = model.cuda()

    result_list = []
    with torch.no_grad():
        for idx, infer_input in tqdm(enumerate(infer_dataloader)):
            mask = infer_input['attention_mask'].to(device)
            input_id = infer_input['input_ids'].squeeze(1).to(device)

            output = model(input_id, mask)
            result = np.argmax(F.softmax(output, dim=0).cpu(), axis=1).numpy()
            result_list.extend(result)
    return result_list

def get_word_emotion_pair(cls_model, origin_essay_sentence):

    from konlpy.tag import Okt

    okt = Okt()
    #text = '๋‚˜๋Š” ์™œ ์—„๋งˆ๋งŒ ๋ฏธ์›Œํ–ˆ์„๊นŒ'
    def get_noun(text):
      noun_list = [k for k, v  in okt.pos(text) if (v == 'Noun' and len(k) > 1)]
      return noun_list
    def get_adj(text):
      adj_list = [k for k, v  in okt.pos(text) if (v == 'Adjective') and (len(k) > 1)]
      return adj_list
    def get_verb(text):
      verb_list = [k for k, v  in okt.pos(text) if (v == 'Verb') and (len(k) > 1)]
      return verb_list

    result_list = infer_data(cls_model, origin_essay_sentence)
    final_result = pd.DataFrame(data = {'text': origin_essay_sentence , 'label' : result_list})
    final_result['emotion'] = final_result['label'].map(idx2emo)
    final_result['noun_list'] = final_result['text'].map(get_noun)
    final_result['adj_list'] = final_result['text'].map(get_adj)
    final_result['verb_list'] = final_result['text'].map(get_verb)
    final_result['title'] = 'none'
    file_made_dt = datetime.datetime.now()
    file_made_dt_str = datetime.datetime.strftime(file_made_dt, '%Y%m%d_%H%M%d')
    os.makedirs(f'./result/{file_made_dt_str}/', exist_ok = True)
    final_result.to_csv(f"./result/{file_made_dt_str}/essay_result.csv", index = False)

    return final_result, file_made_dt_str



def get_essay_base_analysis(file_made_dt_str):
    essay1 = pd.read_csv(f"./result/{file_name_dt}/essay_result.csv")
    essay1['noun_list_len'] = essay1['noun_list'].apply(lambda x : len(x))
    essay1['noun_list_uniqlen'] = essay1['noun_list'].apply(lambda x : len(set(x)))
    essay1['adj_list_len'] = essay1['adj_list'].apply(lambda x : len(x))
    essay1['adj_list_uniqlen'] = essay1['adj_list'].apply(lambda x : len(set(x)))
    essay1['vocab_all'] = essay1[['noun_list','adj_list']].apply(lambda x : sum((eval(x[0]),eval(x[1])), []), axis=1)
    essay1['vocab_cnt'] = essay1['vocab_all'].apply(lambda x : len(x))
    essay1['vocab_unique_cnt'] = essay1['vocab_all'].apply(lambda x : len(set(x)))
    essay1['noun_list'] = essay1['noun_list'].apply(lambda x : eval(x))
    essay1['adj_list'] = essay1['adj_list'].apply(lambda x : eval(x))
    d = essay1.groupby('title')[['noun_list','adj_list']].sum([]).reset_index()
    d['noun_cnt'] = d['noun_list'].apply(lambda x : len(set(x)))
    d['adj_cnt'] = d['adj_list'].apply(lambda x : len(set(x)))

    # ๋ฌธ์žฅ ๊ธฐ์ค€ ์ตœ๊ณ  ๊ฐ์ •
    essay_summary =essay1.groupby(['title'])['emotion'].value_counts().unstack(level =1)

    emo_vocab_dict = {}
    for k, v in essay1[['emotion','noun_list']].values:
      for vocab in v:
        if (k, 'noun', vocab) not in emo_vocab_dict:
          emo_vocab_dict[(k, 'noun', vocab)] = 0

        emo_vocab_dict[(k, 'noun', vocab)] += 1

    for k, v in essay1[['emotion','adj_list']].values:
      for vocab in v:
        if (k, 'adj', vocab) not in emo_vocab_dict:
          emo_vocab_dict[(k, 'adj', vocab)] = 0

        emo_vocab_dict[(k, 'adj', vocab)] += 1
    vocab_emo_cnt_dict = {}
    for k, v in essay1[['emotion','noun_list']].values:
      for vocab in v:
        if (vocab, 'noun') not in vocab_emo_cnt_dict:
          vocab_emo_cnt_dict[('noun', vocab)] = {}
        if k not in vocab_emo_cnt_dict[( 'noun', vocab)]:
          vocab_emo_cnt_dict[( 'noun', vocab)][k] = 0

        vocab_emo_cnt_dict[('noun', vocab)][k] += 1

    for k, v in essay1[['emotion','adj_list']].values:
      for vocab in v:
        if ('adj', vocab) not in vocab_emo_cnt_dict:
          vocab_emo_cnt_dict[( 'adj', vocab)] = {}
        if k not in vocab_emo_cnt_dict[( 'adj', vocab)]:
          vocab_emo_cnt_dict[( 'adj', vocab)][k] = 0

        vocab_emo_cnt_dict[('adj', vocab)][k] += 1

    vocab_emo_cnt_df = pd.DataFrame(vocab_emo_cnt_dict).T
    vocab_emo_cnt_df['total'] = vocab_emo_cnt_df.sum(axis=1)
    # ๋‹จ์–ด๋ณ„ ์ตœ๊ณ  ๊ฐ์ • ๋ฐ ๊ฐ์ • ๊ฐœ์ˆ˜
    all_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False)

    # ๋‹จ์–ด๋ณ„ ์ตœ๊ณ  ๊ฐ์ • ๋ฐ ๊ฐ์ • ๊ฐœ์ˆ˜ , ํ˜•์šฉ์‚ฌ ํฌํ•จ ์‹œ
    adj_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False)

    # ๋ช…์‚ฌ๋งŒ ์‚ฌ์šฉ ์‹œ
    noun_result=vocab_emo_cnt_df[vocab_emo_cnt_df.index.get_level_values(0) == 'noun'].sort_values(by = 'total', ascending = False)

    final_file_name = f"essay_all_vocab_result.csv"
    adj_file_name = f"essay_adj_vocab_result.csv"
    noun_file_name = f"essay_noun_vocab_result.csv"
    
    os.makedirs(f'./result/{file_made_dt_str}/', exist_ok = True)
    
    final_result.to_csv(f"./result/{file_made_dt_str}/essay_all_vocab_result.csv", index = False)
    adj_result.to_csv(f"./result/{file_made_dt_str}/essay_adj_vocab_result.csv", index = False)
    noun_result.to_csv(f"./result/{file_made_dt_str}/essay_noun_vocab_result.csv", index = False)
    
    return final_result, adj_result, noun_result, essay_summary, file_made_dt_str


from transformers import pipeline
model_name = 'AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru'
question_answerer = pipeline("question-answering", model=model_name)

class BertClassifier(nn.Module):

    def __init__(self, dropout = 0.3):
        super(BertClassifier, self).__init__()

        self.bert= BertModel.from_pretrained('bert-base-multilingual-cased')
        self.dropout = nn.Dropout(dropout)
        self.linear = nn.Linear(768, 6)
        self.relu = nn.ReLU()

    def forward(self, input_id, mask):
        _, pooled_output = self.bert(input_ids = input_id, attention_mask = mask, return_dict = False)
        dropout_output = self.dropout(pooled_output)
        linear_output = self.linear(dropout_output)
        final_layer= self.relu(linear_output)

        return final_layer

        
def all_process(origin_essay):
    essay_sent =split_essay_to_sentence(origin_essay)
    row_dict = {}
    for row in tqdm(essay_sent):
        question = 'what is the feeling?'
        answer = question_answerer(question=question, context=row)
        row_dict[row] = answer
    emo2idx, idx2emo = get_sent_labeldata()
    #tokenizer, cls_model = load_model()
    tokenizer = AutoTokenizer.from_pretrained('bert-base-multilingual-cased')
    cls_model = AutoModelForSequenceClassification.from_pretrained('bert-base-multilingual-cased')
    final_result, file_name_dt = get_word_emotion_pair(cls_model, essay_sent)
    all_result, adj_result, noun_result, essay_summary, file_made_dt_str = get_essay_base_analysis(file_name_dt)
    
    summary_result = pd.concat([adj_result, noun_result]).fillna(0).sort_values(by = 'total', ascending = False).fillna(0).reset_index()[:30]
    with open(f'./result/{file_name_dt}/summary.json','w') as f:
        json.dump( essay_summary.to_json(),f)
    with open(f'./result/{file_made_dt_str}/all_result.json','w') as f:
        json.dump( all_result.to_json(),f)    
    with open(f'./result/{file_made_dt_str}/adj_result.json','w') as f:
        json.dump( adj_result.to_json(),f)  
    with open(f'./result/{file_made_dt_str}/noun_result.json','w') as f:
        json.dump( noun_result.to_json(),f)  
    return essay_summary

import gradio as gr
outputs = [gr.Dataframe(row_count = (6, "dynamic"),
                        col_count=(2, "dynamic"),
                        label="Essay Summary based on Words")
                        #headers=['type','word','์Šฌํ””', '๋ถ„๋…ธ', '๊ธฐ์จ', '๋ถˆ์•ˆ', '์ƒ์ฒ˜', '๋‹นํ™ฉ', 'total'])
    
                        ]
    
    
                        #row_count = (10, "dynamic"),
                        #col_count=(9, "dynamic"),
                        #label="Results",
                        #headers=['type','word','์Šฌํ””', '๋ถ„๋…ธ', '๊ธฐ์จ', '๋ถˆ์•ˆ', '์ƒ์ฒ˜', '๋‹นํ™ฉ', 'total'])
          #]
        
iface = gr.Interface(
   fn=all_process,
   inputs = gr.Textbox(lines=2, placeholder= '๋‹น์‹ ์˜ ๊ธ€์„ ๋„ฃ์–ด๋ณด์„ธ์š”'),
   outputs = outputs,
)
iface.launch(share =True)