File size: 7,319 Bytes
f366c08
f318216
f366c08
36b95af
1727a4e
f366c08
0a9e16c
f366c08
36b95af
308efc8
9199c0d
14fd229
1727a4e
 
 
 
6683a3b
 
1727a4e
14fd229
cb06874
36b95af
f366c08
36b95af
15a7c48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b95af
 
 
0a9e16c
 
 
 
 
 
838eb55
0a9e16c
 
b639ea4
36b95af
 
 
 
 
 
 
8655006
8a95699
36b95af
0a9e16c
f366c08
 
36b95af
 
 
f366c08
36b95af
 
 
 
 
0a9e16c
 
 
 
 
 
 
 
 
 
 
14fd229
0a9e16c
 
 
8655006
0a9e16c
 
 
8655006
0a9e16c
805f947
0a9e16c
f366c08
 
f12c9a6
fc53105
0332354
f12c9a6
f366c08
 
ba069c6
 
 
 
 
f366c08
ba069c6
57709d9
a52c105
ce50a6a
8ec9ed3
0a9e16c
57709d9
b79eb08
ce50a6a
 
 
 
 
f366c08
805f947
ce50a6a
 
805f947
0a9e16c
f366c08
0a9e16c
 
838eb55
0a9e16c
 
 
 
066c1c2
b79eb08
ce50a6a
 
 
f12c9a6
b79eb08
57709d9
36b95af
ce50a6a
 
 
 
57709d9
b79eb08
57709d9
ce50a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b79eb08
ce50a6a
 
 
 
 
 
 
8a95699
066c1c2
 
 
 
 
 
 
 
 
ce50a6a
 
1727a4e
 
 
 
 
0a9e16c
b79eb08
 
36b95af
1727a4e
 
 
 
 
 
 
 
 
 
 
 
f366c08
 
d588458
f366c08
4061b41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import gradio as gr
import spaces
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"

torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

pipe.load_lora_weights("prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", weight_name="SD3.5-Turbo-Realism-2.0-LoRA.safetensors")
trigger_word = "Turbo Realism"  
pipe.fuse_lora(lora_scale=1.0)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# Define styles
style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

STYLE_NAMES = [style["name"] for style in style_list]
DEFAULT_STYLE_NAME = STYLE_NAMES[0]

grid_sizes = {
    "2x1": (2, 1),
    "1x2": (1, 2),
    "2x2": (2, 2),
    "2x3": (2, 3),
    "3x2": (3, 2),
    "1x1": (1, 1)
}

@spaces.GPU(duration=60)
def infer(
    prompt,
    negative_prompt="",
    seed=42,
    randomize_seed=False,
    width=1024,
    height=1024,
    guidance_scale=7.5,
    num_inference_steps=10,
    style="Style Zero",
    grid_size="1x1",
    progress=gr.Progress(track_tqdm=True),
):
    selected_style = next(s for s in style_list if s["name"] == style)
    styled_prompt = selected_style["prompt"].format(prompt=prompt)
    styled_negative_prompt = selected_style["negative_prompt"]

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    grid_size_x, grid_size_y = grid_sizes.get(grid_size, (1, 1))
    num_images = grid_size_x * grid_size_y

    options = {
        "prompt": styled_prompt,
        "negative_prompt": styled_negative_prompt,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "width": width,
        "height": height,
        "generator": generator,
        "num_images_per_prompt": num_images,
    }

    torch.cuda.empty_cache()  # Clear GPU memory
    result = pipe(**options)

    grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y))

    for i, img in enumerate(result.images[:num_images]):
        grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height))

    return grid_img, seed

examples = [
    "A tiny astronaut hatching from an egg on the moon, 4k, planet theme",
    "An anime-style illustration of a delicious, golden-brown wiener schnitzel on a plate, served with fresh lemon slices, parsley --style raw5",
    "Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K, Photo-Realistic",
    "A cat holding a sign that says hello world --ar 85:128 --v 6.0 --style raw"
]

css = '''
.gradio-container{max-width: 585px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## SD3.5 TURBO REALISM 🪨")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)


        with gr.Row(visible=True):
            grid_size_selection = gr.Dropdown(
                choices=["2x1", "1x2", "2x2", "2x3", "3x2", "1x1"],
                value="1x1",
                label="Grid Size"
            )

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=7.5,
                    step=0.1,
                    value=0.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=10,
                )       
                
                style_selection = gr.Radio(
                    show_label=True,
                    container=True,
                    interactive=True,
                    choices=STYLE_NAMES,
                    value=DEFAULT_STYLE_NAME,
                    label="Quality Style",
                )

        gr.Examples(examples=examples, 
                    inputs=[prompt], 
                    outputs=[result, seed], 
                    fn=infer, 
                    cache_examples=False)

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            style_selection,
            grid_size_selection,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()