File size: 8,935 Bytes
f366c08
 
 
 
 
 
 
 
 
 
15a7c48
f366c08
 
 
15a7c48
f366c08
 
 
 
 
 
 
53ed779
9199c0d
f366c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04bdf31
f366c08
 
 
 
8d2d89a
f366c08
 
15a7c48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f366c08
 
 
 
 
 
 
 
 
 
15a7c48
f366c08
 
 
 
15a7c48
 
f366c08
15a7c48
f366c08
 
15a7c48
 
f366c08
 
 
058a9f6
f366c08
 
 
 
 
 
 
 
 
 
0c9467d
f366c08
 
 
 
 
 
 
 
 
 
822c939
 
79af6a7
 
 
 
 
 
 
 
 
822c939
 
 
 
 
ecc6ec6
148746c
f366c08
 
 
 
 
 
9e51c52
f366c08
 
 
 
15a7c48
9199c0d
f366c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15a7c48
f366c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15a7c48
f366c08
 
 
 
 
 
 
 
 
15a7c48
 
 
 
 
 
 
 
 
f366c08
 
 
 
 
01c99d1
f366c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15a7c48
f366c08
 
 
 
822c939
d114777
822c939
 
175d8ba
d114777
 
 
5a34953
 
3ed74c1
f366c08
d114777
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#!/usr/bin/env python
#patch 0.01 ()
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# ..

import os
import random
import uuid
from typing import Tuple
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

DESCRIPTIONz= """## EPIC REALISM 🙀

"""
def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

MAX_SEED = np.iinfo(np.int32).max

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max

USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0

if torch.cuda.is_available():
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "SG161222/RealVisXL_V4.0_Lightning",
        torch_dtype=torch.float16,
        use_safetensors=True,
    )
    pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    pipe.load_lora_weights("prithivMLmods/Canopus-Realism-LoRA", weight_name="Canopus-Realism-LoRA.safetensors", adapter_name="rlms")
    pipe.set_adapters("rlms")
    pipe.to("cuda")

style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}

DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    if style_name in styles:
        p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    else:
        p, n = styles[DEFAULT_STYLE_NAME]

    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative

@spaces.GPU(duration=60, enable_queue=True)
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    style_name: str = DEFAULT_STYLE_NAME,
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))

    positive_prompt, effective_negative_prompt = apply_style(style_name, prompt, negative_prompt)
    
    if not use_negative_prompt:
        effective_negative_prompt = ""  # type: ignore

    images = pipe(
        prompt=positive_prompt,
        negative_prompt=effective_negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=20,
        num_images_per_prompt=1,
        cross_attention_kwargs={"scale": 0.65},
        output_type="pil",
    ).images
    image_paths = [save_image(img) for img in images]
    print(image_paths)
    return image_paths, seed

examples = [
    "A man dressed in sunglasses and brown jacket, in the style of cypherpunk, timeless beauty, exacting precision, uhd image, aleksandr deyneka, matte background, leather/hide  --ar 67:101 --v 5",
    "Photography, front view, dynamic range, female model, upper-body, black T-shirt, dark khaki cargo pants, urban backdrop, dusk, dramatic sunlights, bokeh, cityscape, photorealism, natural, UHD --ar 9:16 --stylize 300"
]

css = '''
.gradio-container{max-width: 545px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

def load_predefined_images():
    predefined_images = [
        "assets/3.png",
        "assets/4.png",
        "assets/5.png",
        "assets/6.png",
        "assets/7.png",
        "assets/8.png",
        "assets/9.png",
        "assets/10.png",
        "assets/11.png",
    ]
    return predefined_images



with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown(DESCRIPTIONz)  
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt with realism tag!",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
    
    with gr.Accordion("Advanced options", open=False, visible=False):
        use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
        negative_prompt = gr.Text(
            label="Negative prompt",
            lines=4,
            max_lines=6,
            value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
            placeholder="Enter a negative prompt",
            visible=True,
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
            visible=True
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=2048,
                step=8,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=2048,
                step=8,
                value=1024,
            )
        
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=20.0,
                step=0.1,
                value=3.0,
            )

        style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            label="Quality Style",
        )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=False,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
            style_selection,
        ],
        outputs=[result, seed],
        api_name="run",
    )
    # Adding a predefined gallery section
    
    gr.Markdown("### Generated Images")
    predefined_gallery = gr.Gallery(label="Generated Images", columns=3, show_label=False, value=load_predefined_images())
    
    gr.Markdown("**Disclaimer/Note:**")
    
    gr.Markdown("🙀This space provides realistic image generation, which works better for human faces and portraits. Realistic trigger works properly, better for photorealistic trigger words, close-up shots, face diffusion, male, female characters.")
   
    gr.Markdown("⚠️users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.")
    
if __name__ == "__main__":
    demo.queue(max_size=40).launch()