Spaces:
Runtime error
Runtime error
# import gradio as gr | |
# from transformers import pipeline | |
# # Load the pre-trained model | |
# generator = pipeline("question-answering", model="EleutherAI/gpt-neo-2.7B") | |
# # Define Gradio interface | |
# def generate_response(prompt): | |
# # Generate response based on the prompt | |
# response = generator(prompt, max_length=50, do_sample=True, temperature=0.9) | |
# return response[0]['generated_text'] | |
# # Create Gradio interface | |
# iface = gr.Interface( | |
# fn=generate_response, | |
# inputs="text", | |
# outputs="text", | |
# title="OpenAI Text Generation Model", | |
# description="Enter a prompt and get a generated text response.", | |
# ) | |
# # Deploy the Gradio interface | |
# iface.launch(share=True) | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model_name = "microsoft/phi-2" | |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
def generate_answer(question): | |
inputs = tokenizer.encode("Question: " + question, return_tensors="pt") | |
outputs = model.generate(inputs, max_length=2000, num_return_sequences=1, do_sample=True) | |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return answer | |
iface = gr.Interface( | |
fn=generate_answer, | |
inputs="text", | |
outputs="text", | |
title="Open-Domain Question Answering", | |
description="Enter your question to get an answer.", | |
) | |
iface.launch(share=True) # Deploy the interface | |
# from transformers import AutoModelForCausalLM, AutoTokenizer | |
# model_name = "abacusai/Smaug-72B-v0.1" | |
# model = AutoModelForCausalLM.from_pretrained(model_name) | |
# tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# def generate_answer(question): | |
# inputs = tokenizer.encode("Question: " + question, return_tensors="pt") | |
# outputs = model.generate(inputs, max_length=100, num_return_sequences=1, early_stopping=True, do_sample=True) | |
# answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# return answer | |