pragnakalp commited on
Commit
2c61a5c
1 Parent(s): 504144c

Upload 13 files

Browse files
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from datetime import date
3
+ import json
4
+ import csv
5
+ import datetime
6
+ import smtplib
7
+ from email.mime.text import MIMEText
8
+ import requests
9
+ from transformers import AutoTokenizer, AutoModelWithLMHead
10
+ import gc
11
+ import os
12
+ import json
13
+ import numpy as np
14
+ from tqdm import trange
15
+ import torch
16
+ import torch.nn.functional as F
17
+ # from bert_ner_model_loader import biobert_model
18
+ from biobert_utils import *
19
+ import pandas as pd
20
+
21
+ cwd = os.getcwd()
22
+ bio_bert_ner_model = os.path.join(cwd)
23
+ Entities_Found =[]
24
+ Entity_Types = []
25
+ k = 0
26
+ def generate_emotion(article):
27
+ text = "Input sentence: "
28
+ text += article
29
+
30
+ biobert_model = BIOBERT_Ner(bio_bert_ner_model)
31
+
32
+ output = biobert_model.predict(text)
33
+ print(output)
34
+ k = 0
35
+ for i in output:
36
+ for j in i:
37
+ if k == 0:
38
+ Entities_Found.append(j)
39
+ k += 1
40
+ else:
41
+ Entity_Types.append(j)
42
+ k = 0
43
+ result = {'Entities Found':Entities_Found, 'Entity Types':Entity_Types}
44
+ return pd.DataFrame(result)
45
+
46
+
47
+ inputs=gr.Textbox(lines=10, label="Sentences",elem_id="inp_div")
48
+ outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Entities Found","Entity Types"])]
49
+
50
+ demo = gr.Interface(
51
+ generate_emotion,
52
+ inputs,
53
+ outputs,
54
+ title="Entity Recognition For Input Text",
55
+ description="Feel free to give your feedback",
56
+ css=".gradio-container {background-color: lightgray} #inp_div {background-color: [#7](https://www1.example.com/issues/7)FB3D5;"
57
+ )
58
+ demo.launch()
bert_ner_model_loader.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """BERT NER Inference."""
2
+
3
+ from __future__ import absolute_import, division, print_function
4
+
5
+ import json
6
+ import os
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ from torch.nn import CrossEntropyLoss
11
+ from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
12
+ from torch.utils.data.distributed import DistributedSampler
13
+ from tqdm import tqdm, trange
14
+ from nltk import word_tokenize
15
+ # from transformers import (BertConfig, BertForTokenClassification,
16
+ # BertTokenizer)
17
+ from pytorch_transformers import (BertForTokenClassification, BertTokenizer)
18
+
19
+
20
+ class BertNer(BertForTokenClassification):
21
+
22
+ def forward(self, input_ids, token_type_ids=None, attention_mask=None, valid_ids=None):
23
+ sequence_output = self.bert(input_ids, token_type_ids, attention_mask, head_mask=None)[0]
24
+ batch_size,max_len,feat_dim = sequence_output.shape
25
+ valid_output = torch.zeros(batch_size,max_len,feat_dim,dtype=torch.float32,device='cpu')
26
+ # valid_output = torch.zeros(batch_size,max_len,feat_dim,dtype=torch.float32,device='cuda' if torch.cuda.is_available() else 'cpu')
27
+ for i in range(batch_size):
28
+ jj = -1
29
+ for j in range(max_len):
30
+ if valid_ids[i][j].item() == 1:
31
+ jj += 1
32
+ valid_output[i][jj] = sequence_output[i][j]
33
+ sequence_output = self.dropout(valid_output)
34
+ logits = self.classifier(sequence_output)
35
+ return logits
36
+
37
+ class Ner:
38
+
39
+ def __init__(self,model_dir: str):
40
+ self.model , self.tokenizer, self.model_config = self.load_model(model_dir)
41
+ self.label_map = self.model_config["label_map"]
42
+ self.max_seq_length = self.model_config["max_seq_length"]
43
+ self.label_map = {int(k):v for k,v in self.label_map.items()}
44
+ self.device = "cpu"
45
+ # self.device = "cuda" if torch.cuda.is_available() else "cpu"
46
+ self.model = self.model.to(self.device)
47
+ self.model.eval()
48
+
49
+ def load_model(self, model_dir: str, model_config: str = "model_config.json"):
50
+ model_config = os.path.join(model_dir,model_config)
51
+ model_config = json.load(open(model_config))
52
+ model = BertNer.from_pretrained(model_dir)
53
+ tokenizer = BertTokenizer.from_pretrained(model_dir, do_lower_case=model_config["do_lower"])
54
+ return model, tokenizer, model_config
55
+
56
+ def tokenize(self, text: str):
57
+ """ tokenize input"""
58
+ words = word_tokenize(text)
59
+ tokens = []
60
+ valid_positions = []
61
+ for i,word in enumerate(words):
62
+ token = self.tokenizer.tokenize(word)
63
+ tokens.extend(token)
64
+ for i in range(len(token)):
65
+ if i == 0:
66
+ valid_positions.append(1)
67
+ else:
68
+ valid_positions.append(0)
69
+ # print("valid positions from text o/p:=>", valid_positions)
70
+ return tokens, valid_positions
71
+
72
+ def preprocess(self, text: str):
73
+ """ preprocess """
74
+ tokens, valid_positions = self.tokenize(text)
75
+ ## insert "[CLS]"
76
+ tokens.insert(0,"[CLS]")
77
+ valid_positions.insert(0,1)
78
+ ## insert "[SEP]"
79
+ tokens.append("[SEP]")
80
+ valid_positions.append(1)
81
+ segment_ids = []
82
+ for i in range(len(tokens)):
83
+ segment_ids.append(0)
84
+ input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
85
+ # print("input ids with berttokenizer:=>", input_ids)
86
+ input_mask = [1] * len(input_ids)
87
+ while len(input_ids) < self.max_seq_length:
88
+ input_ids.append(0)
89
+ input_mask.append(0)
90
+ segment_ids.append(0)
91
+ valid_positions.append(0)
92
+ return input_ids,input_mask,segment_ids,valid_positions
93
+
94
+ def predict_entity(self, B_lab, I_lab, words, labels, entity_list):
95
+ temp=[]
96
+ entity=[]
97
+
98
+ for word, (label, confidence), B_l, I_l in zip(words, labels, B_lab, I_lab):
99
+
100
+ if ((label==B_l) or (label==I_l)) and label!='O':
101
+ if label==B_l:
102
+ entity.append(temp)
103
+ temp=[]
104
+ temp.append(label)
105
+
106
+ temp.append(word)
107
+
108
+ entity.append(temp)
109
+ # print(entity)
110
+
111
+ entity_name_label = []
112
+ for entity_name in entity[1:]:
113
+ for ent_key, ent_value in entity_list.items():
114
+ if (ent_key==entity_name[0]):
115
+ # entity_name_label.append(' '.join(entity_name[1:]) + ": " + ent_value)
116
+ entity_name_label.append([' '.join(entity_name[1:]), ent_value])
117
+
118
+ return entity_name_label
119
+
120
+ def predict(self, text: str):
121
+ input_ids,input_mask,segment_ids,valid_ids = self.preprocess(text)
122
+ # print("valid ids:=>", segment_ids)
123
+ input_ids = torch.tensor([input_ids],dtype=torch.long,device=self.device)
124
+ input_mask = torch.tensor([input_mask],dtype=torch.long,device=self.device)
125
+ segment_ids = torch.tensor([segment_ids],dtype=torch.long,device=self.device)
126
+ valid_ids = torch.tensor([valid_ids],dtype=torch.long,device=self.device)
127
+
128
+ with torch.no_grad():
129
+ logits = self.model(input_ids, segment_ids, input_mask,valid_ids)
130
+ # print("logit values:=>", logits)
131
+ logits = F.softmax(logits,dim=2)
132
+ # print("logit values:=>", logits[0])
133
+ logits_label = torch.argmax(logits,dim=2)
134
+ logits_label = logits_label.detach().cpu().numpy().tolist()[0]
135
+ # print("logits label value list:=>", logits_label)
136
+
137
+ logits_confidence = [values[label].item() for values,label in zip(logits[0],logits_label)]
138
+
139
+ logits = []
140
+ pos = 0
141
+ for index,mask in enumerate(valid_ids[0]):
142
+ if index == 0:
143
+ continue
144
+ if mask == 1:
145
+ logits.append((logits_label[index-pos],logits_confidence[index-pos]))
146
+ else:
147
+ pos += 1
148
+ logits.pop()
149
+ labels = [(self.label_map[label],confidence) for label,confidence in logits]
150
+ words = word_tokenize(text)
151
+
152
+ entity_list = {'B-PER':'Person',
153
+ 'B-FAC':'Facility',
154
+ 'B-LOC':'Location',
155
+ 'B-ORG':'Organization',
156
+ 'B-ART':'Work Of Art',
157
+ 'B-EVENT':'Event',
158
+ 'B-DATE':'Date-Time Entity',
159
+ 'B-TIME':'Date-Time Entity',
160
+ 'B-LAW':'Law Terms',
161
+ 'B-PRODUCT':'Product',
162
+ 'B-PERCENT':'Percentage',
163
+ 'B-MONEY':'Currency',
164
+ 'B-LANGUAGE':'Langauge',
165
+ 'B-NORP':'Nationality / Religion / Political group',
166
+ 'B-QUANTITY':'Quantity',
167
+ 'B-ORDINAL':'Ordinal Number',
168
+ 'B-CARDINAL':'Cardinal Number'}
169
+
170
+ B_labels=[]
171
+ I_labels=[]
172
+ for label, confidence in labels:
173
+ if (label[:1]=='B'):
174
+ B_labels.append(label)
175
+ I_labels.append('O')
176
+ elif (label[:1]=='I'):
177
+ I_labels.append(label)
178
+ B_labels.append('O')
179
+ else:
180
+ B_labels.append('O')
181
+ I_labels.append('O')
182
+
183
+ assert len(labels) == len(words) == len(I_labels) == len(B_labels)
184
+
185
+ output = self.predict_entity(B_labels, I_labels, words, labels, entity_list)
186
+ print(output)
187
+
188
+ # output = [{"word":word,"tag":label,"confidence":confidence} for word,(label,confidence) in zip(words,labels)]
189
+ return output
190
+
191
+
biobert_utils.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """BERT NER Inference."""
2
+
3
+ import json
4
+ import os
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from nltk import word_tokenize
8
+ from pytorch_transformers import (BertForTokenClassification, BertTokenizer)
9
+
10
+
11
+ class BertNer(BertForTokenClassification):
12
+
13
+ def forward(self, input_ids, token_type_ids=None, attention_mask=None, valid_ids=None):
14
+ sequence_output = self.bert(input_ids, token_type_ids, attention_mask, head_mask=None)[0]
15
+ batch_size,max_len,feat_dim = sequence_output.shape
16
+ # valid_output = torch.zeros(batch_size,max_len,feat_dim,dtype=torch.float32,device='cuda' if torch.cuda.is_available() else 'cpu')
17
+ valid_output = torch.zeros(batch_size,max_len,feat_dim,dtype=torch.float32,device='cpu')
18
+ for i in range(batch_size):
19
+ jj = -1
20
+ for j in range(max_len):
21
+ if valid_ids[i][j].item() == 1:
22
+ jj += 1
23
+ valid_output[i][jj] = sequence_output[i][j]
24
+ sequence_output = self.dropout(valid_output)
25
+ logits = self.classifier(sequence_output)
26
+ return logits
27
+
28
+ class BIOBERT_Ner:
29
+
30
+ def __init__(self,model_dir: str):
31
+ self.model , self.tokenizer, self.model_config = self.load_model(model_dir)
32
+ self.label_map = self.model_config["label_map"]
33
+ self.max_seq_length = self.model_config["max_seq_length"]
34
+ self.label_map = {int(k):v for k,v in self.label_map.items()}
35
+ self.device = "cpu"
36
+ # self.device = "cuda" if torch.cuda.is_available() else "cpu"
37
+ self.model = self.model.to(self.device)
38
+ self.model.eval()
39
+
40
+ def load_model(self, model_dir: str, model_config: str = "model_config.json"):
41
+ model_config = os.path.join(model_dir,model_config)
42
+ model_config = json.load(open(model_config))
43
+ model = BertNer.from_pretrained(model_dir)
44
+ tokenizer = BertTokenizer.from_pretrained(model_dir, do_lower_case=model_config["do_lower"])
45
+ return model, tokenizer, model_config
46
+
47
+ def tokenize(self, text: str):
48
+ """ tokenize input"""
49
+ words = word_tokenize(text)
50
+ tokens = []
51
+ valid_positions = []
52
+ for i,word in enumerate(words):
53
+ token = self.tokenizer.tokenize(word)
54
+ tokens.extend(token)
55
+ for i in range(len(token)):
56
+ if i == 0:
57
+ valid_positions.append(1)
58
+ else:
59
+ valid_positions.append(0)
60
+ return tokens, valid_positions
61
+
62
+ def preprocess(self, text: str):
63
+ """ preprocess """
64
+
65
+ tokens, valid_positions = self.tokenize(text)
66
+
67
+ ## insert "[CLS]"
68
+ tokens.insert(0,"[CLS]")
69
+
70
+ valid_positions.insert(0,1)
71
+
72
+ ## insert "[SEP]"
73
+ tokens.append("[SEP]")
74
+
75
+ valid_positions.append(1)
76
+ segment_ids = []
77
+ for i in range(len(tokens)):
78
+ segment_ids.append(0)
79
+ input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
80
+ input_mask = [1] * len(input_ids)
81
+ while len(input_ids) < self.max_seq_length:
82
+ input_ids.append(0)
83
+ input_mask.append(0)
84
+ segment_ids.append(0)
85
+ valid_positions.append(0)
86
+ return input_ids,input_mask,segment_ids,valid_positions
87
+
88
+ def predict_entity(self, B_lab, I_lab, words, labels, entity_list):
89
+ temp=[]
90
+ entity=[]
91
+
92
+ for word, label, B_l, I_l in zip(words, labels, B_lab, I_lab):
93
+
94
+ if ((label==B_l) or (label==I_l)) and label!='O':
95
+ if label==B_l:
96
+ entity.append(temp)
97
+ temp=[]
98
+ temp.append(label)
99
+
100
+ temp.append(word)
101
+
102
+ entity.append(temp)
103
+
104
+ entity_name_label = []
105
+ for entity_name in entity[1:]:
106
+ for ent_key, ent_value in entity_list.items():
107
+ if (ent_key==entity_name[0]):
108
+ entity_name_label.append([' '.join(entity_name[1:]), ent_value])
109
+
110
+ return entity_name_label
111
+
112
+ def predict(self, text: str):
113
+ print("text:", text)
114
+ input_ids,input_mask,segment_ids,valid_ids = self.preprocess(text)
115
+ input_ids = torch.tensor([input_ids],dtype=torch.long,device=self.device)
116
+ input_mask = torch.tensor([input_mask],dtype=torch.long,device=self.device)
117
+ segment_ids = torch.tensor([segment_ids],dtype=torch.long,device=self.device)
118
+ valid_ids = torch.tensor([valid_ids],dtype=torch.long,device=self.device)
119
+
120
+ with torch.no_grad():
121
+ logits = self.model(input_ids, segment_ids, input_mask,valid_ids)
122
+ logits = F.softmax(logits,dim=2)
123
+ logits_label = torch.argmax(logits,dim=2)
124
+ logits_label = logits_label.detach().cpu().numpy().tolist()[0]
125
+
126
+ logits = []
127
+ pos = 0
128
+ for index,mask in enumerate(valid_ids[0]):
129
+ if index == 0:
130
+ continue
131
+ if mask == 1:
132
+ logits.append((logits_label[index-pos]))
133
+ else:
134
+ pos += 1
135
+ logits.pop()
136
+ labels = [(self.label_map[label]) for label in logits]
137
+ words = word_tokenize(text)
138
+
139
+ entity_list = {'B-ANATOMY':'Anatomy', 'B-GENE':'Gene', 'B-CHEMICAL':'Chemical', 'B-DISEASE':'Disease', 'B-PROTEIN':'Protein', 'B-ORGANISM':'Organism', 'B-CANCER':'Cancer', 'B-ORGAN':'Organ', 'B-CELL':'Cell', 'B-TISSUE':'Tissue', 'B-PATHOLOGY_TERM':'Pathlogy', 'B-COMPLEX':'Complex', 'B-TAXON':'Taxon'}
140
+
141
+ B_labels=[]
142
+ I_labels=[]
143
+ for label in labels:
144
+ if (label[:1]=='B'):
145
+ B_labels.append(label)
146
+ I_labels.append('O')
147
+ elif (label[:1]=='I'):
148
+ I_labels.append(label)
149
+ B_labels.append('O')
150
+ else:
151
+ B_labels.append('O')
152
+ I_labels.append('O')
153
+
154
+ assert len(labels) == len(words) == len(I_labels) == len(B_labels)
155
+
156
+ output = self.predict_entity(B_labels, I_labels, words, labels, entity_list)
157
+
158
+ return output
159
+
160
+
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "finetuning_task": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "is_decoder": false,
17
+ "label2id": {
18
+ "LABEL_0": 0,
19
+ "LABEL_1": 1
20
+ },
21
+ "layer_norm_eps": 1e-12,
22
+ "max_position_embeddings": 512,
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "num_labels": 27,
26
+ "output_attentions": false,
27
+ "output_hidden_states": false,
28
+ "output_past": true,
29
+ "pruned_heads": {},
30
+ "torchscript": false,
31
+ "type_vocab_size": 2,
32
+ "use_bfloat16": false,
33
+ "vocab_size": 28996
34
+ }
eval_results.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ f1 = 0.6010022731969414
2
+ loss = 0.24734244643932496
3
+ precision = 0.6018625506596533
4
+ recall = 0.6001444515141614
model_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bert_model": "biobert-base-cased",
3
+ "do_lower": false,
4
+ "max_seq_length": 128,
5
+ "num_labels": 29,
6
+ "label_map":
7
+ {
8
+ "0" :"O",
9
+ "1" :"B-ANATOMY",
10
+ "2" :"I-ANATOMY",
11
+ "3" :"B-GENE",
12
+ "4" :"I-GENE",
13
+ "5" :"B-CHEMICAL",
14
+ "6" :"I-CHEMICAL",
15
+ "7" :"B-DISEASE",
16
+ "8" :"I-DISEASE",
17
+ "9" :"B-PROTEIN",
18
+ "10" :"I-PROTEIN",
19
+ "11" :"B-ORGANISM",
20
+ "12" :"I-ORGANISM",
21
+ "13" :"B-CANCER",
22
+ "14" :"I-CANCER",
23
+ "15" :"B-ORGAN",
24
+ "16" :"I-ORGAN",
25
+ "17" :"B-CELL",
26
+ "18" :"I-CELL",
27
+ "19" :"B-TISSUE",
28
+ "20" :"I-TISSUE",
29
+ "21": "B-PATHOLOGY_TERM",
30
+ "22": "I-PATHOLOGY_TERM",
31
+ "23": "B-COMPLEX",
32
+ "24": "I-COMPLEX",
33
+ "25": "B-TAXON",
34
+ "26": "I-TAXON",
35
+ "27" :"[CLS]",
36
+ "28" :"[SEP]"
37
+ }
38
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:412399c4d81a36efcc63d3c6eebb37d9a442576b0e637eac08fd45d830b02efa
3
+ size 433372007
requirements.txt ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ boto3==1.14.56
2
+ botocore==1.17.56
3
+ certifi==2020.6.20
4
+ chardet==3.0.4
5
+ click==7.1.2
6
+ docutils==0.15.2
7
+ fire==0.3.1
8
+ Flask==1.1.2
9
+ Flask-Cors==3.0.9
10
+ geoip2==3.0.0
11
+ idna==2.8
12
+ itsdangerous==1.1.0
13
+ Jinja2==2.11.2
14
+ jmespath==0.10.0
15
+ joblib==0.16.0
16
+ MarkupSafe==1.1.1
17
+ maxminddb==1.5.2
18
+ nltk==3.4.5
19
+ numpy==1.23.5
20
+ Pillow==7.2.0
21
+ pkg-resources==0.0.0
22
+ python-dateutil==2.8.2
23
+ pytorch-transformers==1.2.0
24
+ pytz==2020.1
25
+ regex==2020.7.14
26
+ requests==2.22.0
27
+ s3transfer==0.3.3
28
+ sacremoses==0.0.43
29
+ sentencepiece==0.1.91
30
+ six==1.15.0
31
+ termcolor==1.1.0
32
+ torch==1.4.0
33
+ torchvision==0.5.0
34
+ tqdm==4.48.2
35
+ transformers==2.1.1
36
+ urllib3==1.25.6
37
+ uWSGI==2.0.19.1
38
+ Werkzeug==1.0.1
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "init_inputs": []}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8d04d6c200da456bab414d4ce7ba1a7473ac55f2c50f2a14f43782b55cbb225
3
+ size 1208
vocab.txt ADDED
The diff for this file is too large to render. See raw diff