import gradio as gr from datetime import date import json import csv import datetime import smtplib from email.mime.text import MIMEText import requests from transformers import AutoTokenizer, AutoModelWithLMHead import os import numpy as np import json from tqdm import trange import gc import torch import torch.nn.functional as F from bert_ner_model_loader import Ner import pandas as pd from huggingface_hub import Repository import huggingface_hub import socket HF_TOKEN = os.environ.get("HF_TOKEN") DATASET_NAME = "bert_base_ner" DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}" DATA_FILENAME = "bert_base_ner_logs.csv" DATA_FILE = os.path.join("bert_base_ner_logs", DATA_FILENAME) DATASET_REPO_ID = "pragnakalp/bert_base_ner" print("is none?", HF_TOKEN is None) input_value = "The U.S. President Donald Trump came to visit Ahmedabad first time at Motera Stadium with our Prime Minister Narendra Modi in February 2020" try: hf_hub_download( repo_id=DATASET_REPO_ID, filename=DATA_FILENAME, cache_dir=DATA_DIRNAME, force_filename=DATA_FILENAME ) except: print("file not found") repo = Repository( local_dir="bert_base_ner_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN ) cwd = os.getcwd() bert_ner_model = os.path.join(cwd) Entities_Found =[] Entity_Types = [] k = 0 def get_device_ip_address(): result = {} if os.name == "nt": result = "Running on Windows" hostname = socket.gethostname() ip_address = socket.gethostbyname(hostname) result['ip_addr'] = ip_address result['host'] = hostname print(result) return result elif os.name == "posix": gw = os.popen("ip -4 route show default").read().split() s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect((gw[2], 0)) ipaddr = s.getsockname()[0] gateway = gw[2] host = socket.gethostname() result['ip_addr'] = ipaddr result['host'] = host print(result) return result else: result['id'] = os.name + " not supported yet." print(result) return result def generate_emotion(article): text = "Input sentence: " text += article model_ner = Ner(bert_ner_model) output = model_ner.predict(text) print(output) k = 0 Entities_Found.clear() Entity_Types.clear() save_data_and_sendmail(article,output) for i in output: for j in i: if k == 0: Entities_Found.append(j) k += 1 else: Entity_Types.append(j) k = 0 result = {'Entities Found':Entities_Found, 'Entity Types':Entity_Types} return pd.DataFrame(result) def save_data_and_sendmail(article,output): try: print(">>"*30) hostname = {} hostname = get_device_ip_address() # url = 'https://pragnakalpdev35.pythonanywhere.com/HF_space_que_gen' # # url = 'http://pragnakalpdev33.pythonanywhere.com/HF_space_question_generator' # myobj = {'article': article,'total_que': num_que,'gen_que':result,'ip_addr':hostname.get("ip_addr",""),'host':hostname.get("host","")} # x = requests.post(url, json = myobj) inputdata = article ip = hostname.get("ip_addr","") print(ip) url = 'https://pragnakalpdev33.pythonanywhere.com/HF_space_bert_base_ner' # url = 'http://pragnakalpdev33.pythonanywhere.com/HF_space_question_generator' myobj = {'article': article,'gen_text':output,'ip_addr':hostname.get("ip_addr",""),'host':hostname.get("host","")} x = requests.post(url, json = myobj) add_csv = [inputdata,output,ip] with open(DATA_FILE, "a") as f: writer = csv.writer(f) # write the data writer.writerow(add_csv) commit_url = repo.push_to_hub() print("commit data :",commit_url) return "Successfully save data" except Exception as e: return "Error while sending mail" + str(e) with gr.Blocks(css = ".gradio-container {background-color: lightgray}") as demo: gr.Markdown("

NLP services we are offering.

style='text-align: center;>Developed by : Pragnakalp Techlabs

""") event = sub_btn.click(generate_emotion, inputs=input, outputs=output) demo.launch() # demo = gr.Interface( # generate_emotion, # inputs, # outputs, # title="Entity Recognition For Input Text", # description="Feel free to give your feedback", # css=".gradio-container {background-color: lightgray} #inp_div {background-color: [#7](https://www1.example.com/issues/7)FB3D5;" # ) # demo.launch()