Spaces:
Running
Running
File size: 6,348 Bytes
3e0cc3d 3038296 3e0cc3d 2e29a2a 3e0cc3d 4fbea90 3e0cc3d 6520201 3e0cc3d 09c365d 3e0cc3d be6f283 c9ea1f0 a95d70c 1910baa 0b65517 12409b9 02ce532 517905d 02ce532 d4c5a4f 02ce532 b523034 02ce532 cb87008 02ce532 3e0cc3d dc3f0d2 3e0cc3d 8cb6315 0197658 f4c86b6 dc3f0d2 f4c86b6 3e0cc3d 89475a9 02ce532 35ee8bc 8cb6315 be1022c c2a7c44 8cb6315 c2a7c44 02ce532 35ee8bc 02ce532 ce84bdc 3e6975a 156b1d4 f4c86b6 156b1d4 a546517 07775da f4c86b6 e5e1033 f4c86b6 e5e1033 156b1d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import json
import gradio as gr
import datetime
from datetime import date
import smtplib
import csv
from email.mime.text import MIMEText
import requests
import os
import numpy as np
import json
from tqdm import trange
import gc
import torch
import torch.nn.functional as F
from bert_ner_model_loader import Ner
import pandas as pd
from huggingface_hub import Repository
import huggingface_hub
import socket
from urllib.request import urlopen
import re as r
from transformers import AutoTokenizer, AutoModelWithLMHead
HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_NAME = "bert_based_ner_dataset"
DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}"
DATA_FILENAME = "bert_base_ner_logs.csv"
DATA_FILE = os.path.join("bert_base_ner_logs", DATA_FILENAME)
DATASET_REPO_ID = "pragnakalp/bert_based_ner_dataset"
print("is none?", HF_TOKEN is None)
input_value = "The U.S. President Donald Trump came to visit Ahmedabad first time at Motera Stadium with our Prime Minister Narendra Modi in February 2020"
try:
hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=DATA_FILENAME,
cache_dir=DATA_DIRNAME,
force_filename=DATA_FILENAME
)
except:
print("file not found")
repo = Repository(
local_dir="bert_base_ner_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
cwd = os.getcwd()
bert_ner_model = os.path.join(cwd)
Entities_Found =[]
Entity_Types = []
k = 0
def getIP():
d = str(urlopen('http://checkip.dyndns.com/')
.read())
return r.compile(r'Address: (\d+\.\d+\.\d+\.\d+)').search(d).group(1)
def get_location(ip_addr):
ip=ip_addr
req_data={
"ip":ip,
"token":"pkml123"
}
url = "https://demos.pragnakalp.com/get-ip-location"
# req_data=json.dumps(req_data)
# print("req_data",req_data)
headers = {'Content-Type': 'application/json'}
response = requests.request("POST", url, headers=headers, data=json.dumps(req_data))
response = response.json()
print("response======>>",response)
return response
def generate_ner(article):
result = {'Entities Found':[], 'Entity Types':[]}
if article.strip():
text = "Input sentence: "
text += article
model_ner = Ner(bert_ner_model)
output = model_ner.predict(text)
print(output)
k = 0
Entities_Found.clear()
Entity_Types.clear()
save_data_and_sendmail(article,output)
for i in output:
for j in i:
if k == 0:
Entities_Found.append(j)
k += 1
else:
Entity_Types.append(j)
k = 0
result = {'Entities Found':Entities_Found, 'Entity Types':Entity_Types}
return pd.DataFrame(result)
else:
raise gr.Error("Please enter text in inputbox!!!!")
def save_data_and_sendmail(article,output):
try:
print("welcome")
ip_address = ''
ip_address= getIP()
print(ip_address)
location = get_location(ip_address)
print(location)
add_csv = [article,output,ip_address,location]
with open(DATA_FILE, "a") as f:
writer = csv.writer(f)
# write the data
writer.writerow(add_csv)
commit_url = repo.push_to_hub()
print("commit data :",commit_url)
url = 'https://pragnakalpdev33.pythonanywhere.com/HF_space_bert_base_ner'
myobj = {'article': article,'gen_text':output,'ip_addr':ip_address,"location":location}
x = requests.post(url, json = myobj)
return "Successfully save data"
except Exception as e:
print("error")
return "Error while sending mail" + str(e)
input=gr.Textbox(lines=3, value=input_value, label="Input Text")
output = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), headers=["Entities Found","Entity Types"], lable="Here is the result",wrap=True)]
# with gr.Blocks(css=".gradio-container {background-color: lightgray}") as demo:
# gr.Markdown("<h1 style='text-align: center;'>"+ "Named Entity Recognition Using BERT" + "</h1><br/><br/>")
# with gr.Row():
# with gr.Column():
# input=gr.Textbox(lines=5, value=input_value, label="Input Text")
# sub_btn = gr.Button("Submit")
# output = gr.Dataframe(row_count = (3, "dynamic"), col_count=(2, "fixed"), headers=["Entities Found","Entity Types"])
# gr.Markdown(
# """
# <p style='text-align: center;'>Feel free to give us your <a href="https://www.pragnakalp.com/contact/"> feedback </a> on this NER demo.
# For all your Named Entity Recognition related requirements, we are here to help you.<br />
# Email us your requirement at <a href="mailto:[email protected]"> [email protected] </a>.
# And don't forget to check out more interesting <a href="https://www.pragnakalp.com/services/natural-language-processing-services/">NLP services</a> we are offering.<br/>
# <b>Developed by</b> : <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs </a></p>
# """)
# event = sub_btn.click(generate_emotion, inputs=input, outputs=output)
# demo.launch()
demo = gr.Interface(
generate_ner,
input,
output,
title="Named Entity Recognition Using BERT",
css=".gradio-container {background-color: lightgray} #inp_div {background-color: #7FB3D5;",
article="""<p style='text-align: center;'>Feel free to give us your <a href="https://www.pragnakalp.com/contact/" target="_blank">feedback</a> on this NER demo.
For all your Named Entity Recognition related requirements, we are here to help you. Email us your requirement at
<a href="mailto:[email protected]" target="_blank">[email protected]</a>. And don't forget to check out more interesting
<a href="https://www.pragnakalp.com/services/natural-language-processing-services/" target="_blank">NLP services</a> we are offering.
<p style='text-align: center;'>Developed by :<a href="https://www.pragnakalp.com" target="_blank"> Pragnakalp Techlabs</a></p>"""
)
demo.launch() |