Spaces:
Running
Running
File size: 8,416 Bytes
3e0cc3d 4fbea90 3e0cc3d 6520201 3e0cc3d 09c365d 3e0cc3d be6f283 c9ea1f0 a95d70c 3e0cc3d 0b65517 02ce532 517905d 02ce532 d4c5a4f 02ce532 b523034 02ce532 cb87008 02ce532 3e0cc3d 1befc82 709e988 1befc82 02ce532 8cb6315 b011ecc 8cb6315 02ce532 8cb6315 b011ecc 58dade5 0197658 b011ecc 1befc82 8cb6315 0197658 f4c86b6 3e0cc3d 89475a9 02ce532 35ee8bc 8cb6315 be1022c 02ce532 8cb6315 c2a7c44 8cb6315 c2a7c44 02ce532 35ee8bc 02ce532 ce84bdc f4c86b6 156b1d4 f4c86b6 156b1d4 a546517 07775da f4c86b6 156b1d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import gradio as gr
from datetime import date
import json
import datetime
import smtplib
import csv
from email.mime.text import MIMEText
import requests
from transformers import AutoTokenizer, AutoModelWithLMHead
import os
import numpy as np
import json
from tqdm import trange
import gc
import torch
import torch.nn.functional as F
from bert_ner_model_loader import Ner
import pandas as pd
from huggingface_hub import Repository
import huggingface_hub
import socket
from urllib.request import urlopen
import re as r
HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_NAME = "bert_based_ner_dataset"
DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}"
DATA_FILENAME = "bert_base_ner_logs.csv"
DATA_FILE = os.path.join("bert_base_ner_logs", DATA_FILENAME)
DATASET_REPO_ID = "pragnakalp/bert_based_ner_dataset"
print("is none?", HF_TOKEN is None)
input_value = "The U.S. President Donald Trump came to visit Ahmedabad first time at Motera Stadium with our Prime Minister Narendra Modi in February 2020"
try:
hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=DATA_FILENAME,
cache_dir=DATA_DIRNAME,
force_filename=DATA_FILENAME
)
except:
print("file not found")
repo = Repository(
local_dir="bert_base_ner_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
cwd = os.getcwd()
bert_ner_model = os.path.join(cwd)
Entities_Found =[]
Entity_Types = []
k = 0
# def get_device_ip_address():
# if os.name == "nt":
# result = "Running on Windows"
# hostname = socket.gethostname()
# ip_address = socket.gethostbyname(hostname)
# return ip_address
# elif os.name == "posix":
# gw = os.popen("ip -4 route show default").read().split()
# s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# s.connect((gw[2], 0))
# ip_address = s.getsockname()[0]
# gateway = gw[2]
# host = socket.gethostname()
# return ip_address
# else:
# result['id'] = os.name + " not supported yet."
# print(result)
# return result
# def get_location(ip_address):
# ip=ip_address
# # ip=str(request.remote_addr)
# req_data={
# "ip":ip,
# "token":"pkml123"
# }
# url = "https://demos.pragnakalp.com/get-ip-location"
# # req_data=json.dumps(req_data)
# # print("req_data",req_data)
# headers = {'Content-Type': 'application/json'}
# response = requests.request("POST", url, headers=headers, data=json.dumps(req_data))
# response = response.json()
# print("response======>>",response)
# return response
# def get_ip():
# response = requests.get('https://api64.ipify.org?format=json').json()
# return response["ip"]
# def get_location(ip_addr):
# ip_address = ip_addr
# response = requests.get(f'https://ipapi.co/{ip_address}/json/').json()
# location_data = {
# "ip": ip_address,
# "city": response.get("city"),
# "region": response.get("region"),
# "country": response.get("country_name")
# }
# return location_data
def getIP():
d = str(urlopen('http://checkip.dyndns.com/')
.read())
return r.compile(r'Address: (\d+\.\d+\.\d+\.\d+)').search(d).group(1)
def get_location(ip_addr):
ip=ip_addr
req_data={
"ip":ip,
"token":"pkml123"
}
url = "https://demos.pragnakalp.com/get-ip-location"
# req_data=json.dumps(req_data)
# print("req_data",req_data)
headers = {'Content-Type': 'application/json'}
response = requests.request("POST", url, headers=headers, data=json.dumps(req_data))
response = response.json()
print("response======>>",response)
return response
def generate_ner(article):
result = {'Entities Found':[], 'Entity Types':[]}
if article.strip():
text = "Input sentence: "
text += article
model_ner = Ner(bert_ner_model)
output = model_ner.predict(text)
print(output)
k = 0
Entities_Found.clear()
Entity_Types.clear()
save_data_and_sendmail(article,output)
for i in output:
for j in i:
if k == 0:
Entities_Found.append(j)
k += 1
else:
Entity_Types.append(j)
k = 0
result = {'Entities Found':Entities_Found, 'Entity Types':Entity_Types}
return pd.DataFrame(result)
else:
raise gr.Error("Please enter text in inputbox!!!!")
def save_data_and_sendmail(article,output):
try:
print("welcome")
ip_address = ''
ip_address= getIP()
print(ip_address)
location = get_location(ip_address)
print(location)
add_csv = [article,output,ip_address,location]
with open(DATA_FILE, "a") as f:
writer = csv.writer(f)
# write the data
writer.writerow(add_csv)
commit_url = repo.push_to_hub()
print("commit data :",commit_url)
# url = 'https://pragnakalpdev35.pythonanywhere.com/HF_space_que_gen'
# # url = 'http://pragnakalpdev33.pythonanywhere.com/HF_space_question_generator'
# myobj = {'article': article,'total_que': num_que,'gen_que':result,'ip_addr':hostname.get("ip_addr",""),'host':hostname.get("host","")}
# x = requests.post(url, json = myobj)
url = 'https://pragnakalpdev33.pythonanywhere.com/HF_space_bert_base_ner'
myobj = {'article': article,'gen_text':output,'ip_addr':ip_address,"location":location}
x = requests.post(url, json = myobj)
return "Successfully save data"
except Exception as e:
print("error")
return "Error while sending mail" + str(e)
input=gr.Textbox(lines=3, value=input_value, label="Input Text")
output = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), headers=["Entities Found","Entity Types"], lable="Here is the result"),wrap=True]
# with gr.Blocks(css=".gradio-container {background-color: lightgray}") as demo:
# gr.Markdown("<h1 style='text-align: center;'>"+ "Named Entity Recognition Using BERT" + "</h1><br/><br/>")
# with gr.Row():
# with gr.Column():
# input=gr.Textbox(lines=5, value=input_value, label="Input Text")
# sub_btn = gr.Button("Submit")
# output = gr.Dataframe(row_count = (3, "dynamic"), col_count=(2, "fixed"), headers=["Entities Found","Entity Types"])
# gr.Markdown(
# """
# <p style='text-align: center;'>Feel free to give us your <a href="https://www.pragnakalp.com/contact/"> feedback </a> on this NER demo.
# For all your Named Entity Recognition related requirements, we are here to help you.<br />
# Email us your requirement at <a href="mailto:[email protected]"> [email protected] </a>.
# And don't forget to check out more interesting <a href="https://www.pragnakalp.com/services/natural-language-processing-services/">NLP services</a> we are offering.<br/>
# <b>Developed by</b> : <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs </a></p>
# """)
# event = sub_btn.click(generate_emotion, inputs=input, outputs=output)
# demo.launch()
demo = gr.Interface(
generate_ner,
input,
output,
title="Named Entity Recognition Using BERT",
css=".gradio-container {background-color: lightgray} #inp_div {background-color: #7FB3D5;",
article="""<p style='text-align: center;'>Feel free to give us your <a href="https://www.pragnakalp.com/contact/" target="_blank">feedback</a> on this NER demo.
For all your Named Entity Recognition related requirements, we are here to help you. Email us your requirement at
<a href="mailto:[email protected]" target="_blank">[email protected]</a>. And don't forget to check out more interesting
<a href="https://www.pragnakalp.com/services/natural-language-processing-services/" target="_blank">NLP services</a> we are offering.
<p style='text-align: center;'>Developed by :<a href="https://www.pragnakalp.com" target="_blank"> Pragnakalp Techlabs</a></p>"""
)
demo.launch() |