File size: 6,734 Bytes
3e0cc3d
 
 
 
 
 
 
 
 
 
 
6520201
3e0cc3d
09c365d
3e0cc3d
 
 
 
be6f283
 
c9ea1f0
3e0cc3d
02ce532
517905d
02ce532
 
 
 
 
b523034
02ce532
 
 
 
 
 
 
 
 
 
 
 
cb87008
02ce532
 
3e0cc3d
 
 
 
 
02ce532
0197658
02ce532
 
 
 
 
0197658
02ce532
 
 
 
0197658
02ce532
 
 
0197658
02ce532
 
 
 
 
0197658
 
 
 
 
 
 
 
02ce532
0197658
 
 
 
 
 
 
 
 
3e0cc3d
 
 
 
 
 
 
 
 
89475a9
 
83bfa74
3e0cc3d
 
 
 
 
 
 
 
365d35c
89475a9
3e0cc3d
 
 
89475a9
02ce532
0197658
 
 
be1022c
 
 
 
 
 
 
 
 
02ce532
 
 
 
0197658
c2a7c44
0197658
c2a7c44
 
02ce532
 
 
 
 
408b42b
1635b9b
156b1d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a546517
1635b9b
be1022c
1447535
517905d
0e2a08a
156b1d4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
from datetime import date
import json
import csv
import datetime
import smtplib
from email.mime.text import MIMEText
import requests
from transformers import AutoTokenizer, AutoModelWithLMHead 
import os
import numpy as np
import json
from tqdm import trange
import gc
import torch
import torch.nn.functional as F
from bert_ner_model_loader import Ner
import pandas as pd
from huggingface_hub import Repository
import huggingface_hub
import socket

HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_NAME = "bert_based_ner_dataset"
DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}"
DATA_FILENAME = "bert_base_ner_logs.csv"
DATA_FILE = os.path.join("bert_base_ner_logs", DATA_FILENAME)
DATASET_REPO_ID = "pragnakalp/bert_base_ner"
print("is none?", HF_TOKEN is None)
input_value = "The U.S. President Donald Trump came to visit Ahmedabad first time at Motera Stadium with our Prime Minister Narendra Modi in February 2020"
try:
    hf_hub_download(
        repo_id=DATASET_REPO_ID,
        filename=DATA_FILENAME,
        cache_dir=DATA_DIRNAME,
        force_filename=DATA_FILENAME
    )
    
except:
    print("file not found")

repo = Repository(
    local_dir="bert_base_ner_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)

cwd = os.getcwd()
bert_ner_model = os.path.join(cwd)
Entities_Found =[]
Entity_Types = []
k = 0
def get_device_ip_address():
    
    if os.name == "nt":
        result = "Running on Windows"
        hostname = socket.gethostname()
        ip_address = socket.gethostbyname(hostname)
        print(result)
        return ip_address
    elif os.name == "posix":
        gw = os.popen("ip -4 route show default").read().split()
        s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
        s.connect((gw[2], 0))
        ip_address = s.getsockname()[0]
        gateway = gw[2]
        host = socket.gethostname()
        print(result)
        return ip_address
    else:
        result['id'] = os.name + " not supported yet."
        print(result)
        return result

def get_location(ip_addr):
    ip=ip_addr
    # ip=str(request.remote_addr)
    req_data={
        "ip":ip,
        "token":"pkml123"
    }
    url = "https://demos.pragnakalp.com/get-ip-location"

    # req_data=json.dumps(req_data)
    # print("req_data",req_data)
    headers = {'Content-Type': 'application/json'}

    response = requests.request("POST", url, headers=headers, data=json.dumps(req_data))
    response = response.json()
    print("response======>>",response)
    return response
    
def generate_emotion(article):
    text = "Input sentence: "
    text += article
    
    model_ner = Ner(bert_ner_model)
    
    output = model_ner.predict(text)
    print(output)
    k = 0
    Entities_Found.clear()
    Entity_Types.clear()
    save_data_and_sendmail(article,output)
    for i in output:
        for j in i:
            if k == 0:
                Entities_Found.append(j)
                k += 1
            else:
                Entity_Types.append(j)
                k = 0
    result = {'Entities Found':Entities_Found, 'Entity Types':Entity_Types}  
    
    return pd.DataFrame(result)


def save_data_and_sendmail(article,output):
    try:
        ip_address = ''
        ip_address = get_device_ip_address()
        location = get_location(ip_address)

        add_csv = [article,output,ip_address,location]
        with open(DATA_FILE, "a") as f:
            writer = csv.writer(f)
            # write the data
            writer.writerow(add_csv)
            commit_url = repo.push_to_hub()
            print("commit data   :",commit_url)
        
        # url = 'https://pragnakalpdev35.pythonanywhere.com/HF_space_que_gen'
        # # url = 'http://pragnakalpdev33.pythonanywhere.com/HF_space_question_generator'
        # myobj = {'article': article,'total_que': num_que,'gen_que':result,'ip_addr':hostname.get("ip_addr",""),'host':hostname.get("host","")}
        # x = requests.post(url, json = myobj) 
        
        url = 'https://pragnakalpdev33.pythonanywhere.com/HF_space_bert_base_ner'
        myobj = {'article': article,'gen_text':output,'ip_addr':ip_address,'loc':location}
        x = requests.post(url, json = myobj) 
        
        return "Successfully save data"
    
    except Exception as e:
        return "Error while sending mail" + str(e)
        
input=gr.Textbox(lines=3, value=input_value, label="Input Text")
output = gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), headers=["Entities Found","Entity Types"], lable="Here is the result")
# with gr.Blocks(css=".gradio-container {background-color: lightgray}") as demo:
#     gr.Markdown("<h1 style='text-align: center;'>"+ "Named Entity Recognition Using BERT" + "</h1><br/><br/>")
#     with gr.Row():
#         with gr.Column():
#             input=gr.Textbox(lines=5, value=input_value, label="Input Text")
#             sub_btn = gr.Button("Submit")
#         output = gr.Dataframe(row_count = (3, "dynamic"), col_count=(2, "fixed"), headers=["Entities Found","Entity Types"])
#     gr.Markdown(
#                 """
#                 <p style='text-align: center;'>Feel free to give us your <a href="https://www.pragnakalp.com/contact/"> feedback </a> on this NER demo. 
#                 For all your Named Entity Recognition related requirements, we are here to help you.<br /> 
#                 Email us your requirement at <a href="mailto:[email protected]"> [email protected] </a>. 
#                 And don't forget to check out more interesting <a href="https://www.pragnakalp.com/services/natural-language-processing-services/">NLP services</a> we are offering.<br/>
#                 <b>Developed by</b> : <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs </a></p>
#                 """)
                
#     event = sub_btn.click(generate_emotion, inputs=input, outputs=output)
# demo.launch()

demo = gr.Interface(
    generate_emotion,
    input,
    output,
    title="Named Entity Recognition Using BERT",
    css=".gradio-container {background-color: lightgray}",
    article="""Feel free to give us your [feedback](https://www.pragnakalp.com/contact/) on this NER demo. For all your Named Entity Recognition related 
            requirements, we are here to help you. Email us your requirement at [[email protected]]("mailto:[email protected]").
            And don't forget to check out more interesting [NLP services](https://www.pragnakalp.com/services/natural-language-processing-services/) we are offering.
                                        <p style='text-align: center;'>Developed by :[ Pragnakalp Techlabs](https://www.pragnakalp.com)</p>"""
)
demo.launch()