import gradio as gr import torch import torch.nn as nn import torchvision.transforms as transforms from PIL import Image norm_layer = nn.InstanceNorm2d class ResidualBlock(nn.Module): def __init__(self, in_features): super(ResidualBlock, self).__init__() conv_block = [ nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features), nn.ReLU(inplace=True), nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features), ] self.conv_block = nn.Sequential(*conv_block) def forward(self, x): return x + self.conv_block(x) class Generator(nn.Module): def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True): super(Generator, self).__init__() # Initial convolution block model0 = [ nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), norm_layer(64), nn.ReLU(inplace=True), ] self.model0 = nn.Sequential(*model0) # Downsampling model1 = [] in_features = 64 out_features = in_features * 2 for _ in range(2): model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), norm_layer(out_features), nn.ReLU(inplace=True), ] in_features = out_features out_features = in_features * 2 self.model1 = nn.Sequential(*model1) model2 = [] # Residual blocks for _ in range(n_residual_blocks): model2 += [ResidualBlock(in_features)] self.model2 = nn.Sequential(*model2) # Upsampling model3 = [] out_features = in_features // 2 for _ in range(2): model3 += [ nn.ConvTranspose2d( in_features, out_features, 3, stride=2, padding=1, output_padding=1 ), norm_layer(out_features), nn.ReLU(inplace=True), ] in_features = out_features out_features = in_features // 2 self.model3 = nn.Sequential(*model3) # Output layer model4 = [nn.ReflectionPad2d(3), nn.Conv2d(256, output_nc, 7)] if sigmoid: model4 += [nn.Sigmoid()] self.model4 = nn.Sequential(*model4) def forward(self, x, cond=None): out = self.model0(x) out = self.model1(out) out = self.model2(out) out = self.model3(out) out = self.model4(out) return out model1 = Generator(3, 1, 3) model1.load_state_dict(torch.load("model.pth", map_location=torch.device("cpu"))) model1.eval() model2 = Generator(3, 1, 3) model2.load_state_dict(torch.load("model2.pth", map_location=torch.device("cpu"))) model2.eval() def predict(input_img, ver): input_img = Image.open(input_img) transform = transforms.Compose( [transforms.Resize(1080, Image.BICUBIC), transforms.ToTensor()] ) input_img = transform(input_img) input_img = torch.unsqueeze(input_img, 0) drawing = 0 with torch.no_grad(): if ver == "Simple Lines": drawing = model2(input_img)[0].detach() else: drawing = model1(input_img)[0].detach() drawing = transforms.ToPILImage()(drawing) return drawing title = "Image to Line Drawings - Complex and Simple Portraits and Landscapes" examples = [ ["01.jpg", "Complex Lines"], ["02.jpg", "Simple Lines"], ["03.jpg", "Simple Lines"], ["04.jpg", "Simple Lines"], ["05.jpg", "Simple Lines"], ] iface = gr.Interface( predict, [ gr.inputs.Image(type="filepath"), gr.inputs.Radio( ["Complex Lines", "Simple Lines"], type="value", default="Simple Lines", label="version", ), ], gr.outputs.Image(type="pil"), title=title, examples=examples, ) iface.launch()