File size: 4,311 Bytes
eb7fd36 5f74f5a 14b30fc 5f74f5a 98989c5 5f74f5a 98989c5 5f74f5a 98989c5 c4a0e56 98989c5 5f74f5a c4a0e56 98989c5 5f74f5a 98989c5 5f74f5a 98989c5 5f74f5a 98989c5 5f74f5a 98989c5 5f74f5a 98989c5 5f74f5a 9196827 5f74f5a 98989c5 5f74f5a 98989c5 5f74f5a 98989c5 5f74f5a 98989c5 5f74f5a 98989c5 baa2bd3 98989c5 5f74f5a 98989c5 5f74f5a eb7fd36 5f74f5a 14b30fc b94f049 8f18de2 14b30fc 8f18de2 bcdd461 5f74f5a 98989c5 b94f049 98989c5 5f74f5a 98989c5 5f74f5a eb7fd36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
norm_layer = nn.InstanceNorm2d
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features),
]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
super(Generator, self).__init__()
# Initial convolution block
model0 = [
nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, 64, 7),
norm_layer(64),
nn.ReLU(inplace=True),
]
self.model0 = nn.Sequential(*model0)
# Downsampling
model1 = []
in_features = 64
out_features = in_features * 2
for _ in range(2):
model1 += [
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True),
]
in_features = out_features
out_features = in_features * 2
self.model1 = nn.Sequential(*model1)
model2 = []
# Residual blocks
for _ in range(n_residual_blocks):
model2 += [ResidualBlock(in_features)]
self.model2 = nn.Sequential(*model2)
# Upsampling
model3 = []
out_features = in_features // 2
for _ in range(2):
model3 += [
nn.ConvTranspose2d(
in_features, out_features, 3, stride=2, padding=1, output_padding=1
),
norm_layer(out_features),
nn.ReLU(inplace=True),
]
in_features = out_features
out_features = in_features // 2
self.model3 = nn.Sequential(*model3)
# Output layer
model4 = [nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)]
if sigmoid:
model4 += [nn.Sigmoid()]
self.model4 = nn.Sequential(*model4)
def forward(self, x, cond=None):
out = self.model0(x)
out = self.model1(out)
out = self.model2(out)
out = self.model3(out)
out = self.model4(out)
return out
model1 = Generator(3, 1, 3)
model1.load_state_dict(torch.load("model.pth", map_location=torch.device("cpu")))
model1.eval()
model2 = Generator(3, 1, 3)
model2.load_state_dict(torch.load("model2.pth", map_location=torch.device("cpu")))
model2.eval()
def predict(input_img, ver):
input_img = Image.open(input_img)
transform = transforms.Compose(
[transforms.Resize(1080, Image.BICUBIC), transforms.ToTensor()]
)
input_img = transform(input_img)
input_img = torch.unsqueeze(input_img, 0)
drawing = 0
with torch.no_grad():
if ver == "Simple Lines":
drawing = model2(input_img)[0].detach()
else:
drawing = model1(input_img)[0].detach()
drawing = transforms.ToPILImage()(drawing)
# constant by which each pixel is divided
drawing = drawing.point(lambda i: darken_pixel(i))
im_output = drawing
return im_output
def darken_pixel(pixel):
constant = 2.0
if pixel < 200:
return pixel / constant
else:
return pixel
title = "Image to Line Drawings - Complex and Simple Portraits and Landscapes"
examples = [
["01.jpg", "Complex Lines"],
["02.jpg", "Simple Lines"],
["03.jpg", "Simple Lines"],
["04.jpg", "Simple Lines"],
["05.jpg", "Simple Lines"],
]
iface = gr.Interface(
predict,
[
gr.inputs.Image(type="filepath"),
gr.inputs.Radio(
["Complex Lines", "Simple Lines"],
type="value",
default="Simple Lines",
label="version",
),
],
gr.outputs.Image(type="pil"),
title=title,
examples=examples,
)
iface.launch()
|