facefinder / app.py
pleonard's picture
minor changes
9aef8f7
import gradio as gr
from deepface import DeepFace
import numpy as np
import PIL
from PIL import Image, ImageDraw, ImageFont
import time
import pandas as pd
from operator import itemgetter
import os
def get_named_people():
named_people = next(os.walk('db'))[1]
return named_people
dbackends = [
['Haar Cascade (OpenCV)','opencv'],
#['🌈 Single Shot MultiBox Detector (OpenCV)','ssd'], # for whatever reason fails
#['Histogram of Oriented Gradients (Dlib)','dlib'], # dlib seems broken on modern ubuntu
['RetinaFace','retinaface'],
['You Only Look Once v8','yolov8'],
['🌈 YuNet','yunet'],
#['Multi-task Cascade Convolutional Neural Network (TensorFlow) ','mtcnn'],
['Fast Multi-task Cascade Convolutional Neural Network (PyTorch)','fastmtcnn']
]
embedding_backends = [
"VGG-Face",
"Facenet",
"Facenet512",
"ArcFace",
]
dbackendinfo = 'Detectors with 🌈 require a color image.'
with gr.Blocks() as demo:
with gr.Tab("Add Named Person"):
input_image = gr.Image(value="8428_26_SM.jpg")
annotated_image = gr.AnnotatedImage()
selected_face_info = gr.Textbox(label="Selected Face Info", value="Click on a face above")
selected_face_pic = gr.Image(label="Selected Face", value="Click on a face above", height=148)
def findFaces(imgfile,dbackend):
start_time = time.time()
print(start_time)
face_objs = DeepFace.extract_faces(img_path = imgfile, enforce_detection = False, detector_backend = dbackend)
numberoffaces = len(face_objs)
jsontext = ''
global faceannotations
faceannotations = []
for i, face_obj in enumerate(face_objs,1):
face_coordinates = (face_obj["facial_area"]["x"],face_obj["facial_area"]["y"], (face_obj["facial_area"]["x"] + face_obj["facial_area"]["w"]),(face_obj["facial_area"]["y"] + face_obj["facial_area"]["h"]))
face_confidence = "Face " + str(i) + ": "+ "{:.0%}".format(face_obj["confidence"])
face_result=[face_coordinates,face_confidence]
faceannotations.append(face_result)
#jsontext=faceannotations
#jsontext=face_objs
run_time = str(round((time.time() - start_time),2))
results = gr.AnnotatedImage(
label= "Detected " + str(numberoffaces) + " faces via " + dbackend + ' in ' + run_time + ' seconds.',
value=(imgfile, faceannotations)
)
print(run_time)
return(results,numberoffaces,run_time)
dbackendchoice = gr.Radio(choices=dbackends,label='Detector Backend:',info=dbackendinfo,container=True,value='retinaface')
gr.Interface(
allow_flagging = "never",
fn=findFaces,
inputs=[input_image, dbackendchoice],
outputs=[annotated_image,selected_face_info,selected_face_pic],
)
def select_section(evt: gr.SelectData):
cropped_image = np.array(Image.open(input_image.value['path']))
cropped_image = cropped_image[faceannotations[evt.index][0][1]:faceannotations[evt.index][0][3], faceannotations[evt.index][0][0]:faceannotations[evt.index][0][2]]
return faceannotations[evt.index], cropped_image
annotated_image.select(select_section, None, [selected_face_info,selected_face_pic])
with gr.Tab("Find Named Person in All Images"):
with gr.Row():
named_people_dropdown = []
for named_person in get_named_people():
named_people_dropdown.append(named_person.replace("_"," "))
find_list = gr.Dropdown(named_people_dropdown, label="Person", info="Select a Named Person."),
find_button = gr.Button(value="Find this person")
with gr.Tab("Identify People in One Image"):
embedding_backendchoice = gr.Radio(choices=embedding_backends,label='Embedding Backend:',container=True,value='ArcFace')
def identify_in_one_image(imgfile, embedding_backendchoice):
oneimageannotations = []
oneimageresults = DeepFace.find(img_path=imgfile, db_path="db", model_name=embedding_backendchoice)
oneimageresults = pd.concat(oneimageresults)
for i, found_face in oneimageresults.iterrows():
face_coordinates = (found_face["source_x"],found_face["source_y"], (found_face["source_x"] + found_face["source_w"]),(found_face["source_y"] + found_face["source_h"]))
person = found_face["identity"].split("/")[1].replace("_"," ")
face_confidence = "Matched " + person + " {:.0%}".format(found_face["distance"])
face_thumbnail = found_face["identity"]
face_result=[face_coordinates,face_confidence]
oneimageannotations.append(face_result)
results = gr.AnnotatedImage(
value=(imgfile, oneimageannotations)
)
return results, oneimageannotations
oneimage_input_image = gr.Image(value="TEST_spindler.jpg", label='Input image')
found_faces=gr.AnnotatedImage(label='Identified people')
debug_output = gr.Textbox(label="Debug output")
#face_thumbnail = gr.Textbox(label="Identified person")
gr.Interface(
allow_flagging = "never",
fn=identify_in_one_image,
inputs=[oneimage_input_image, embedding_backendchoice],
outputs=[found_faces,debug_output]
)
with gr.Tab("Modify Named Person") as ModifyNamedPersonTab:
def get_named_people_dropdown():
named_people_gallery_imgs = []
named_people_gallery_captions = []
for named_person in get_named_people():
#named_person = named_person.replace("_"," ")
named_people_gallery_imgs.append("db/" + named_person + "/" + named_person.replace("_","") + ".jpg")
named_people_gallery_captions.append(named_person.replace("_"," "))
named_people_gallery_all = list(zip(named_people_gallery_imgs, named_people_gallery_captions))
images = named_people_gallery_all
images.sort(key=itemgetter(1))
return images
named_person_gallery = gr.Gallery(
label="Named People", elem_id="gallery", object_fit="none", columns=9)
ModifyNamedPersonTab.select(get_named_people_dropdown, None, named_person_gallery)
#jsontext = gr.Text(label= "deepface extract_faces results")
demo.launch(show_error=True)