Spaces:
Runtime error
Runtime error
philipp-zettl
commited on
Commit
•
a40a80d
1
Parent(s):
6c8898d
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import spaces
|
4 |
import itertools
|
5 |
import pandas as pd
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
model_name = 'philipp-zettl/t5-small-long-qa'
|
10 |
qa_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
@@ -12,17 +17,177 @@ model_name = 'philipp-zettl/t5-small-qg'
|
|
12 |
qg_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
13 |
tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-small')
|
14 |
|
|
|
|
|
|
|
15 |
# Move only the student model to GPU if available
|
16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
qa_model = qa_model.to(device)
|
18 |
qg_model = qg_model.to(device)
|
|
|
19 |
|
20 |
max_questions = 1
|
21 |
max_answers = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
all_outputs = []
|
|
|
26 |
for input_text in inputs:
|
27 |
model_inputs = tokenizer([input_text], max_length=512, padding=True, truncation=True)
|
28 |
input_ids = torch.tensor(model_inputs['input_ids']).to(device)
|
@@ -31,13 +196,31 @@ def run_model(inputs, tokenizer, model, temperature=0.5, num_return_sequences=1)
|
|
31 |
with torch.no_grad():
|
32 |
sample_output = model.generate(
|
33 |
input_ids[:1],
|
34 |
-
max_length=
|
35 |
-
temperature=temperature,
|
36 |
-
do_sample=True,
|
37 |
num_return_sequences=num_return_sequences,
|
38 |
low_memory=True,
|
39 |
-
|
|
|
40 |
use_cache=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
)
|
42 |
for i, sample_output in enumerate(sample_output):
|
43 |
sample_output = sample_output.unsqueeze(0)
|
@@ -49,19 +232,50 @@ def run_model(inputs, tokenizer, model, temperature=0.5, num_return_sequences=1)
|
|
49 |
|
50 |
|
51 |
@spaces.GPU
|
52 |
-
def gen(content, temperature_qg=0.5, temperature_qa=0.75, num_return_sequences_qg=1, num_return_sequences_qa=1):
|
53 |
inputs = [
|
54 |
f'context: {content}'
|
55 |
]
|
56 |
-
question = run_model(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
inputs = list(
|
59 |
-
[f'question: {q} {
|
60 |
]))
|
61 |
-
answer = run_model(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
questions = list(
|
64 |
-
answers = list(
|
65 |
|
66 |
results = []
|
67 |
for idx, ans in enumerate(answers):
|
@@ -70,8 +284,9 @@ def gen(content, temperature_qg=0.5, temperature_qa=0.75, num_return_sequences_q
|
|
70 |
|
71 |
|
72 |
def variable_outputs(k, max_elems=10):
|
|
|
73 |
k = int(k)
|
74 |
-
return [gr.Text(visible=True)] * k + [gr.Text(visible=False)] * (max(max_elems,
|
75 |
|
76 |
|
77 |
def set_outputs(content, max_elems=10):
|
@@ -89,22 +304,32 @@ def create_file_download(qnas):
|
|
89 |
return 'qnas.tsv'
|
90 |
|
91 |
|
92 |
-
with gr.Blocks() as demo:
|
93 |
with gr.Row(equal_height=True):
|
94 |
with gr.Group("Content"):
|
95 |
content = gr.Textbox(label='Content', lines=15, placeholder='Enter text here', max_lines=10_000)
|
96 |
with gr.Group("Settings"):
|
97 |
-
temperature_qg = gr.Slider(label='Temperature QG', value=0.
|
98 |
-
temperature_qa = gr.Slider(label='Temperature QA', value=0.
|
99 |
-
|
100 |
-
|
|
|
101 |
|
102 |
with gr.Row():
|
103 |
gen_btn = gr.Button("Generate")
|
104 |
|
105 |
-
@gr.render(
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
df = gr.Dataframe(
|
109 |
value=[u.values() for u in qnas],
|
110 |
headers=['Question', 'Answer'],
|
@@ -116,4 +341,5 @@ with gr.Blocks() as demo:
|
|
116 |
download = gr.DownloadButton(label='Download (without headers)', value=create_file_download(pd_df))
|
117 |
|
118 |
|
119 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
import itertools
|
4 |
import pandas as pd
|
5 |
+
import spaces
|
6 |
+
import random
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModel
|
8 |
+
from sklearn.metrics import pairwise_distances
|
9 |
+
from collections import Counter
|
10 |
+
from itertools import chain
|
11 |
+
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
12 |
+
import math
|
13 |
|
14 |
model_name = 'philipp-zettl/t5-small-long-qa'
|
15 |
qa_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
|
17 |
qg_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
18 |
tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-small')
|
19 |
|
20 |
+
embedding_model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
|
21 |
+
embedding_tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
|
22 |
+
|
23 |
# Move only the student model to GPU if available
|
24 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
qa_model = qa_model.to(device)
|
26 |
qg_model = qg_model.to(device)
|
27 |
+
embedding_model = embedding_model.to(device)
|
28 |
|
29 |
max_questions = 1
|
30 |
max_answers = 1
|
31 |
+
max_elem_value = 100
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
def ngrams(sequence, n):
|
36 |
+
return [tuple(sequence[i:i+n]) for i in range(len(sequence)-n+1)]
|
37 |
+
|
38 |
+
def count_ngrams(sequence, max_n):
|
39 |
+
counts = Counter()
|
40 |
+
for n in range(1, max_n + 1):
|
41 |
+
counts.update(ngrams(sequence, n))
|
42 |
+
return counts
|
43 |
+
|
44 |
+
def self_bleu(outputs):
|
45 |
+
smoothing_function = SmoothingFunction().method1
|
46 |
+
scores = []
|
47 |
+
for i in range(len(outputs)):
|
48 |
+
references = outputs[:i] + outputs[i+1:]
|
49 |
+
# Avoid calculating BLEU score for empty references
|
50 |
+
if references:
|
51 |
+
scores.append(sentence_bleu(references, outputs[i], smoothing_function=smoothing_function))
|
52 |
+
# If all references are empty, return a default value
|
53 |
+
if not scores:
|
54 |
+
return 0
|
55 |
+
return sum(scores) / len(scores)
|
56 |
+
|
57 |
+
def dist_n(outputs, n):
|
58 |
+
all_ngrams = list(chain(*[ngrams(output, n) for output in outputs]))
|
59 |
+
unique_ngrams = set(all_ngrams)
|
60 |
+
return len(unique_ngrams) / len(all_ngrams) if all_ngrams else 0
|
61 |
+
|
62 |
+
def perplexity(model, tokenizer, texts):
|
63 |
+
encodings = tokenizer(texts, return_tensors='pt', padding=True, truncation=True)
|
64 |
+
max_length = model.config.n_positions
|
65 |
+
stride = 512
|
66 |
+
lls = []
|
67 |
+
for i in range(0, encodings.input_ids.size(1), stride):
|
68 |
+
begin_loc = max(i + stride - max_length, 0)
|
69 |
+
end_loc = i + stride
|
70 |
+
trg_len = end_loc - i
|
71 |
+
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(model.device)
|
72 |
+
target_ids = input_ids.clone()
|
73 |
+
target_ids[:, :-trg_len] = -100
|
74 |
+
|
75 |
+
with torch.no_grad():
|
76 |
+
outputs = model(input_ids, labels=target_ids)
|
77 |
+
log_likelihood = outputs.loss * trg_len
|
78 |
+
lls.append(log_likelihood)
|
79 |
+
|
80 |
+
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
|
81 |
+
return ppl.item()
|
82 |
+
|
83 |
+
def embedding_similarity(inputs, outputs):
|
84 |
+
global embedding_model, embedding_tokenizer, device
|
85 |
+
def embed(texts):
|
86 |
+
inputs = embedding_tokenizer(texts, return_tensors='pt', padding=True, truncation=True).to(device)
|
87 |
+
with torch.no_grad():
|
88 |
+
outputs = embedding_model(**inputs)
|
89 |
+
return outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
90 |
+
|
91 |
+
input_embeddings = embed(inputs)
|
92 |
+
output_embeddings = embed(outputs)
|
93 |
+
|
94 |
+
similarities = pairwise_distances(input_embeddings, output_embeddings, metric='cosine')
|
95 |
+
return sum(similarities) / len(similarities)
|
96 |
+
|
97 |
+
def js_divergence(p, q):
|
98 |
+
def kl_divergence(p, q):
|
99 |
+
return sum(p[i] * math.log(p[i] / q[i]) for i in range(len(p)) if p[i] != 0 and q[i] != 0)
|
100 |
+
|
101 |
+
p_norm = [float(i)/sum(p) for i in p]
|
102 |
+
q_norm = [float(i)/sum(q) for i in q]
|
103 |
+
|
104 |
+
m = [(p_norm[i] + q_norm[i]) / 2 for i in range(len(p_norm))]
|
105 |
+
|
106 |
+
return (kl_divergence(p_norm, m) + kl_divergence(q_norm, m)) / 2
|
107 |
+
|
108 |
+
def evaluate_model(num_beams, num_beam_groups, model, tokenizer, eval_data, max_length=85):
|
109 |
+
generated_outputs = []
|
110 |
+
|
111 |
+
for input_text in eval_data:
|
112 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
113 |
+
outputs = model.generate(
|
114 |
+
input_ids,
|
115 |
+
num_beams=num_beams,
|
116 |
+
num_beam_groups=num_beam_groups,
|
117 |
+
diversity_penalty=1.0,
|
118 |
+
max_new_tokens=max_length,
|
119 |
+
)
|
120 |
+
decoded_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
121 |
+
generated_outputs.append(decoded_text.split())
|
122 |
+
|
123 |
+
# Self-BLEU for diversity
|
124 |
+
diversity_score = self_bleu(generated_outputs)
|
125 |
|
126 |
+
# Dist-1 and Dist-2 for diversity
|
127 |
+
dist1 = dist_n(generated_outputs, 1)
|
128 |
+
dist2 = dist_n(generated_outputs, 2)
|
129 |
|
130 |
+
# Perplexity for fluency and relevance
|
131 |
+
fluency_score = perplexity(model, tokenizer, [" ".join(output) for output in generated_outputs])
|
132 |
+
|
133 |
+
# Embedding similarity for contextual relevance
|
134 |
+
contextual_score = embedding_similarity(eval_data, [" ".join(output) for output in generated_outputs])
|
135 |
+
|
136 |
+
# Jensen-Shannon Divergence for distribution similarity
|
137 |
+
generated_ngrams = count_ngrams(list(chain(*generated_outputs)), 4)
|
138 |
+
reference_ngrams = count_ngrams(list(chain(*[tokenizer.tokenize(text) for text in eval_data])), 4)
|
139 |
+
all_ngrams = set(generated_ngrams.keys()).union(set(reference_ngrams.keys()))
|
140 |
+
p = [generated_ngrams[ngram] for ngram in all_ngrams]
|
141 |
+
q = [reference_ngrams[ngram] for ngram in all_ngrams]
|
142 |
+
jsd_score = js_divergence(p, q)
|
143 |
+
|
144 |
+
return {
|
145 |
+
"diversity_score": diversity_score,
|
146 |
+
"dist1": dist1,
|
147 |
+
"dist2": dist2,
|
148 |
+
"fluency_score": fluency_score,
|
149 |
+
"contextual_score": contextual_score,
|
150 |
+
"jsd_score": jsd_score
|
151 |
+
}
|
152 |
+
|
153 |
+
def find_best_parameters(eval_data, model, tokenizer, max_length=85):
|
154 |
+
|
155 |
+
# Parameter ranges
|
156 |
+
parameter_map = {
|
157 |
+
2: [2],
|
158 |
+
4: [2],
|
159 |
+
6: [2], # 6x3 == 4x2
|
160 |
+
8: [2], # 8x4 == 6x3 == 4x2
|
161 |
+
10: [2], # 10x5 == 8x4 == 6x3 == 4x2
|
162 |
+
}
|
163 |
+
|
164 |
+
# Find the best parameters
|
165 |
+
best_score = -float('inf')
|
166 |
+
best_params = None
|
167 |
+
|
168 |
+
for num_beams in parameter_map.keys():
|
169 |
+
for num_beam_groups in parameter_map[num_beams]:
|
170 |
+
if num_beam_groups > num_beams:
|
171 |
+
continue # num_beam_groups should not be greater than num_beams
|
172 |
+
|
173 |
+
scores = evaluate_model(num_beams, num_beam_groups, model, tokenizer, eval_data, max_length=max_length)
|
174 |
+
# Combine scores to determine the best parameters
|
175 |
+
combined_score = (scores['dist1'] + scores['dist2'] - scores['fluency_score'] + scores['contextual_score'] - scores['jsd_score']).mean()
|
176 |
+
print(f"num_beams={num_beams}, num_beam_groups={num_beam_groups}, avg combined score={combined_score}")
|
177 |
+
|
178 |
+
if combined_score > best_score:
|
179 |
+
best_score = combined_score
|
180 |
+
best_params = (num_beams, num_beam_groups)
|
181 |
+
|
182 |
+
print(f"Best parameters: num_beams={best_params[0]}, num_beam_groups={best_params[1]} with combined score={best_score}")
|
183 |
+
return best_params
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
def run_model(inputs, tokenizer, model, num_beams=2, num_beam_groups=2, temperature=0.5, num_return_sequences=1, max_length=85):
|
189 |
all_outputs = []
|
190 |
+
torch.manual_seed(42069)
|
191 |
for input_text in inputs:
|
192 |
model_inputs = tokenizer([input_text], max_length=512, padding=True, truncation=True)
|
193 |
input_ids = torch.tensor(model_inputs['input_ids']).to(device)
|
|
|
196 |
with torch.no_grad():
|
197 |
sample_output = model.generate(
|
198 |
input_ids[:1],
|
199 |
+
max_length=max_length,
|
200 |
+
#temperature=temperature,
|
201 |
+
#do_sample=True,
|
202 |
num_return_sequences=num_return_sequences,
|
203 |
low_memory=True,
|
204 |
+
#top_p=temperature,
|
205 |
+
#num_beams=max(2, num_return_sequences),
|
206 |
use_cache=True,
|
207 |
+
# Contrastive search
|
208 |
+
#penalty_alpha=0.6,
|
209 |
+
#top_k=4,
|
210 |
+
# Multi-nomial sampling
|
211 |
+
#do_sample=True,
|
212 |
+
#num_beams=1,
|
213 |
+
# Beam search
|
214 |
+
#num_beams=5,
|
215 |
+
# Beam search multinomial sampling
|
216 |
+
#num_beams=5,
|
217 |
+
#do_sample=True,
|
218 |
+
# Diverse Beam search decoding
|
219 |
+
num_beams=max(2, num_return_sequences),
|
220 |
+
num_beam_groups=max(2, num_return_sequences),
|
221 |
+
diversity_penalty=temperature,
|
222 |
+
#do_sample=True,
|
223 |
+
|
224 |
)
|
225 |
for i, sample_output in enumerate(sample_output):
|
226 |
sample_output = sample_output.unsqueeze(0)
|
|
|
232 |
|
233 |
|
234 |
@spaces.GPU
|
235 |
+
def gen(content, temperature_qg=0.5, temperature_qa=0.75, num_return_sequences_qg=1, num_return_sequences_qa=1, max_length=85):
|
236 |
inputs = [
|
237 |
f'context: {content}'
|
238 |
]
|
239 |
+
question = run_model(
|
240 |
+
inputs,
|
241 |
+
tokenizer,
|
242 |
+
qg_model,
|
243 |
+
num_beams=num_return_sequences_qg,
|
244 |
+
num_beam_groups=num_return_sequences_qg,
|
245 |
+
temperature=temperature_qg,
|
246 |
+
num_return_sequences=num_return_sequences_qg,
|
247 |
+
max_length=max_length
|
248 |
+
)
|
249 |
+
|
250 |
+
q_params = find_best_parameters(list(chain.from_iterable(question)), qg_model, tokenizer, max_length=max_length)
|
251 |
+
|
252 |
+
question = run_model(
|
253 |
+
inputs,
|
254 |
+
tokenizer,
|
255 |
+
qg_model,
|
256 |
+
num_beams=q_params[0],
|
257 |
+
num_beam_groups=q_params[1],
|
258 |
+
temperature=temperature_qg,
|
259 |
+
num_return_sequences=num_return_sequences_qg,
|
260 |
+
max_length=max_length
|
261 |
+
)
|
262 |
|
263 |
+
inputs = list(chain.from_iterable([
|
264 |
+
[f'question: {q} context: {content}' for q in q_set] for q_set in question
|
265 |
]))
|
266 |
+
answer = run_model(
|
267 |
+
inputs,
|
268 |
+
tokenizer,
|
269 |
+
qa_model,
|
270 |
+
num_beams=num_return_sequences_qa,
|
271 |
+
num_beam_groups=num_return_sequences_qa,
|
272 |
+
temperature=temperature_qa,
|
273 |
+
num_return_sequences=num_return_sequences_qa,
|
274 |
+
max_length=max_length
|
275 |
+
)
|
276 |
|
277 |
+
questions = list(chain.from_iterable(question))
|
278 |
+
answers = list(chain.from_iterable(answer))
|
279 |
|
280 |
results = []
|
281 |
for idx, ans in enumerate(answers):
|
|
|
284 |
|
285 |
|
286 |
def variable_outputs(k, max_elems=10):
|
287 |
+
global max_elem_value
|
288 |
k = int(k)
|
289 |
+
return [gr.Text(visible=True)] * k + [gr.Text(visible=False)] * (max(max_elems, max_elem_value)- k)
|
290 |
|
291 |
|
292 |
def set_outputs(content, max_elems=10):
|
|
|
304 |
return 'qnas.tsv'
|
305 |
|
306 |
|
307 |
+
with gr.Blocks(css='.hidden_input {display: none;}') as demo:
|
308 |
with gr.Row(equal_height=True):
|
309 |
with gr.Group("Content"):
|
310 |
content = gr.Textbox(label='Content', lines=15, placeholder='Enter text here', max_lines=10_000)
|
311 |
with gr.Group("Settings"):
|
312 |
+
temperature_qg = gr.Slider(label='Temperature QG', value=0.2, minimum=0, maximum=1, step=0.01)
|
313 |
+
temperature_qa = gr.Slider(label='Temperature QA', value=0.5, minimum=0, maximum=1, step=0.01)
|
314 |
+
max_length = gr.Number(label='Max Length', value=85, minimum=1, step=1, maximum=512)
|
315 |
+
num_return_sequences_qg = gr.Number(label='Number Questions', value=max_questions, minimum=1, step=1, maximum=max(max_questions, max_elem_value))
|
316 |
+
num_return_sequences_qa = gr.Number(label="Number Answers", value=max_answers, minimum=1, step=1, maximum=max(max_questions, max_elem_value))
|
317 |
|
318 |
with gr.Row():
|
319 |
gen_btn = gr.Button("Generate")
|
320 |
|
321 |
+
@gr.render(
|
322 |
+
inputs=[
|
323 |
+
content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa,
|
324 |
+
max_length
|
325 |
+
],
|
326 |
+
triggers=[gen_btn.click]
|
327 |
+
)
|
328 |
+
def render_results(content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa, max_length):
|
329 |
+
qnas = gen(
|
330 |
+
content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa,
|
331 |
+
max_length
|
332 |
+
)
|
333 |
df = gr.Dataframe(
|
334 |
value=[u.values() for u in qnas],
|
335 |
headers=['Question', 'Answer'],
|
|
|
341 |
download = gr.DownloadButton(label='Download (without headers)', value=create_file_download(pd_df))
|
342 |
|
343 |
|
344 |
+
|
345 |
+
demo.launch()
|