Spaces:
Runtime error
Runtime error
philipp-zettl
commited on
Commit
•
4556a29
1
Parent(s):
6089159
Create src/optimization.py
Browse files- src/optimization.py +66 -0
src/optimization.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import Counter
|
2 |
+
from itertools import chain
|
3 |
+
import math
|
4 |
+
import torch
|
5 |
+
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
6 |
+
|
7 |
+
|
8 |
+
def ngrams(sequence, n):
|
9 |
+
return [tuple(sequence[i:i+n]) for i in range(len(sequence)-n+1)]
|
10 |
+
|
11 |
+
def count_ngrams(sequence, max_n):
|
12 |
+
counts = Counter()
|
13 |
+
for n in range(1, max_n + 1):
|
14 |
+
counts.update(ngrams(sequence, n))
|
15 |
+
return counts
|
16 |
+
|
17 |
+
def self_bleu(outputs):
|
18 |
+
smoothing_function = SmoothingFunction().method1
|
19 |
+
scores = []
|
20 |
+
for i in range(len(outputs)):
|
21 |
+
references = outputs[:i] + outputs[i+1:]
|
22 |
+
# Avoid calculating BLEU score for empty references
|
23 |
+
if references:
|
24 |
+
scores.append(sentence_bleu(references, outputs[i], smoothing_function=smoothing_function))
|
25 |
+
# If all references are empty, return a default value
|
26 |
+
if not scores:
|
27 |
+
return 0
|
28 |
+
return sum(scores) / len(scores)
|
29 |
+
|
30 |
+
def dist_n(outputs, n):
|
31 |
+
all_ngrams = list(chain(*[ngrams(output, n) for output in outputs]))
|
32 |
+
unique_ngrams = set(all_ngrams)
|
33 |
+
return len(unique_ngrams) / len(all_ngrams) if all_ngrams else 0
|
34 |
+
|
35 |
+
def perplexity(model, tokenizer, texts):
|
36 |
+
encodings = tokenizer(texts, return_tensors='pt', padding=True, truncation=True)
|
37 |
+
max_length = model.config.n_positions
|
38 |
+
stride = 512
|
39 |
+
lls = []
|
40 |
+
for i in range(0, encodings.input_ids.size(1), stride):
|
41 |
+
begin_loc = max(i + stride - max_length, 0)
|
42 |
+
end_loc = i + stride
|
43 |
+
trg_len = end_loc - i
|
44 |
+
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(model.device)
|
45 |
+
target_ids = input_ids.clone()
|
46 |
+
target_ids[:, :-trg_len] = -100
|
47 |
+
|
48 |
+
with torch.no_grad():
|
49 |
+
outputs = model(input_ids, labels=target_ids)
|
50 |
+
log_likelihood = outputs.loss * trg_len
|
51 |
+
lls.append(log_likelihood)
|
52 |
+
|
53 |
+
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
|
54 |
+
return ppl.item()
|
55 |
+
|
56 |
+
def js_divergence(p, q):
|
57 |
+
def kl_divergence(p, q):
|
58 |
+
return sum(p[i] * math.log(p[i] / q[i]) for i in range(len(p)) if p[i] != 0 and q[i] != 0)
|
59 |
+
|
60 |
+
p_norm = [float(i)/sum(p) for i in p]
|
61 |
+
q_norm = [float(i)/sum(q) for i in q]
|
62 |
+
|
63 |
+
m = [(p_norm[i] + q_norm[i]) / 2 for i in range(len(p_norm))]
|
64 |
+
|
65 |
+
return (kl_divergence(p_norm, m) + kl_divergence(q_norm, m)) / 2
|
66 |
+
|