philipp-zettl's picture
Update app.py
5de7ece verified
raw
history blame
1.55 kB
import gradio as gr
import spaces
import torch
import os
from compel import Compel, ReturnedEmbeddingsType
from diffusers import DiffusionPipeline
model_name = os.environ.get('MODEL_NAME', 'UnfilteredAI/NSFW-gen-v2')
pipe = DiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float16
)
pipe.to('cuda')
compel = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2] ,
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True]
)
@spaces.GPU(duration=120)
def generate(prompt, negative_prompt, num_inference_steps, guidance_scale, width, height, num_samples):
embeds, pooled = compel(prompt)
neg_embeds, neg_pooled = compel(negative_prompt)
return pipe(
prompt_embeds=embeds,
pooled_prompt_embeds=pooled,
negative_prompt_embeds=neg_embeds,
negative_pooled_prompt_embeds=neg_pooled,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
width=width,
height=height,
num_images_per_prompt=num_samples
).images
gr.Interface(
fn=generate,
inputs=[
gr.Text(label="Prompt"),
gr.Text("", label="Negative Prompt"),
gr.Number(7, label="Number inference steps"),
gr.Number(3, label="Guidance scale"),
gr.Number(512, label="Width"),
gr.Number(512, label="Height"),
gr.Number(1, label="# images"),
],
outputs=gr.Gallery(),
).launch()