File size: 6,364 Bytes
33d271f
50f9d19
33d271f
 
 
 
 
4e7ba93
6f9c52b
bb5ac34
33d271f
1afc3c3
1bd8763
6f9c52b
7cce289
baf8697
33d271f
be4e9c1
 
0912eef
 
 
 
be4e9c1
 
 
 
0912eef
3a94eb5
0912eef
c8b79d6
0912eef
6119156
0912eef
33d271f
 
 
 
0912eef
a6e3fcb
33d271f
75ca4f8
33d271f
 
 
 
 
e33d5f3
 
 
dd978c0
 
33d271f
 
 
e33d5f3
 
 
dd978c0
 
33d271f
9d2a5a6
 
e33d5f3
 
 
9d2a5a6
 
33d271f
ada5e04
 
e33d5f3
 
 
ada5e04
 
33d271f
9d2a5a6
 
a2da49a
9d2a5a6
 
 
 
 
 
 
 
 
 
 
 
 
bb5ac34
9d2a5a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d271f
70f68f7
9d2a5a6
 
 
 
 
 
 
 
 
 
 
 
 
b0d99d4
9d2a5a6
 
 
 
 
5731904
9d2a5a6
 
2a3255d
9d2a5a6
 
2a3255d
9d2a5a6
 
 
 
 
a2da49a
 
9d2a5a6
 
50411e7
a2da49a
9d2a5a6
 
 
 
 
b0d99d4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import os
import sys
from pathlib import Path
import random
import string
import time
from queue import Queue
from threading import Thread
import emoji


text_gen=gr.Interface.load("spaces/phenomenon1981/MagicPrompt-Stable-Diffusion")
def get_prompts(prompt_text):
    return text_gen("photo, " + prompt_text)
proc1=gr.Interface.load("models/dreamlike-art/dreamlike-photoreal-2.0")

def restart_script_periodically():
    while True:
        random_time = random.randint(420, 600)
        time.sleep(random_time)
        os.execl(sys.executable, sys.executable, *sys.argv)


restart_thread = Thread(target=restart_script_periodically, daemon=True)
restart_thread.start()


queue = Queue()
queue_threshold = 100

def add_random_noise(prompt, noise_level=0.07):
    if noise_level == 0:
        noise_level = 0.07
    percentage_noise = noise_level * 5
    num_noise_chars = int(len(prompt) * (percentage_noise/100))
    noise_indices = random.sample(range(len(prompt)), num_noise_chars)
    prompt_list = list(prompt)
    noise_chars = list(string.ascii_letters + string.punctuation + ' ' + string.digits)
    noise_chars.extend(['๐Ÿ˜', '๐Ÿ’ฉ', '๐Ÿ˜‚', '๐Ÿค”', '๐Ÿ˜Š', '๐Ÿค—', '๐Ÿ˜ญ', '๐Ÿ™„', '๐Ÿ˜ท', '๐Ÿคฏ', '๐Ÿคซ', '๐Ÿฅด', '๐Ÿ˜ด', '๐Ÿคฉ', '๐Ÿฅณ', '๐Ÿ˜”', '๐Ÿ˜ฉ', '๐Ÿคช', '๐Ÿ˜‡', '๐Ÿคข', '๐Ÿ˜ˆ', '๐Ÿ‘น', '๐Ÿ‘ป', '๐Ÿค–', '๐Ÿ‘ฝ', '๐Ÿ’€', '๐ŸŽƒ', '๐ŸŽ…', '๐ŸŽ„', '๐ŸŽ', '๐ŸŽ‚', '๐ŸŽ‰', '๐ŸŽˆ', '๐ŸŽŠ', '๐ŸŽฎ', 'โค๏ธ', '๐Ÿ’”', '๐Ÿ’•', '๐Ÿ’–', '๐Ÿ’—', '๐Ÿถ', '๐Ÿฑ', '๐Ÿญ', '๐Ÿน', '๐ŸฆŠ', '๐Ÿป', '๐Ÿจ', '๐Ÿฏ', '๐Ÿฆ', '๐Ÿ˜', '๐Ÿ”ฅ', '๐ŸŒง๏ธ', '๐ŸŒž', '๐ŸŒˆ', '๐Ÿ’ฅ', '๐ŸŒด', '๐ŸŒŠ', '๐ŸŒบ', '๐ŸŒป', '๐ŸŒธ', '๐ŸŽจ', '๐ŸŒ…', '๐ŸŒŒ', 'โ˜๏ธ', 'โ›ˆ๏ธ', 'โ„๏ธ', 'โ˜€๏ธ', '๐ŸŒค๏ธ', 'โ›…๏ธ', '๐ŸŒฅ๏ธ', '๐ŸŒฆ๏ธ', '๐ŸŒง๏ธ', '๐ŸŒฉ๏ธ', '๐ŸŒจ๏ธ', '๐ŸŒซ๏ธ', 'โ˜”๏ธ', '๐ŸŒฌ๏ธ', '๐Ÿ’จ', '๐ŸŒช๏ธ', '๐ŸŒˆ'])
    for index in noise_indices:
        prompt_list[index] = random.choice(noise_chars)
    return "".join(prompt_list)


def send_it1(inputs, noise_level, proc1=proc1):
    prompt_with_noise = add_random_noise(inputs, noise_level)
    while queue.qsize() >= queue_threshold:
        time.sleep(2)
    queue.put(prompt_with_noise)
    output1 = proc1(prompt_with_noise)
    return output1

def send_it2(inputs, noise_level, proc1=proc1):
    prompt_with_noise = add_random_noise(inputs, noise_level)
    while queue.qsize() >= queue_threshold:
        time.sleep(2)
    queue.put(prompt_with_noise)
    output2 = proc1(prompt_with_noise)
    return output2

#def send_it3(inputs, noise_level, proc1=proc1):
    #prompt_with_noise = add_random_noise(inputs, noise_level)
    #while queue.qsize() >= queue_threshold:
        #time.sleep(2)
    #queue.put(prompt_with_noise)
    #output3 = proc1(prompt_with_noise)
    #return output3

#def send_it4(inputs, noise_level, proc1=proc1):
    #prompt_with_noise = add_random_noise(inputs, noise_level)
    #while queue.qsize() >= queue_threshold:
        #time.sleep(2)
    #queue.put(prompt_with_noise)
    #output4 = proc1(prompt_with_noise)
    #return output4



with gr.Blocks(css='style.css') as demo:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 650px; margin: 0 auto;">
              <div>
                <h1 style="font-weight: 900; font-size: 3rem; margin-bottom:20px;">
                  Dreamlike Photoreal 2.0
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 96%">
              Noise Level: Controls how much randomness is added to the input before it is sent to the model. Higher noise level produces more diverse outputs, while lower noise level produces similar outputs,
                <a href="https://twitter.com/DavidJohnstonxx/">created by Phenomenon1981</a>.
              </p>
              <p style="margin-bottom: 10px; font-size: 98%">
              โค๏ธ Press the Like Button if you enjoy my space! โค๏ธ</a>
              </p>
            </div>
        """
    )
    with gr.Column(elem_id="col-container"):
        with gr.Row(variant="compact"):
            input_text = gr.Textbox(
                label="Short Prompt",
                show_label=False,
                max_lines=2,
                placeholder="Enter a basic idea and click 'Magic Prompt'",
            ).style(
                container=False,
            )
            see_prompts = gr.Button("โœจ Magic Prompt โœจ").style(full_width=False)

        
        with gr.Row(variant="compact"):
            prompt = gr.Textbox(
                label="Enter your prompt",
                show_label=False,
                max_lines=2,
                placeholder="Full Prompt",
            ).style(
                container=False,
            )
            run = gr.Button("Generate Images").style(full_width=False)
        
        with gr.Row():
            with gr.Row():
                noise_level = gr.Slider(minimum=0.0, maximum=3, step=0.1, label="Noise Level")
        with gr.Row():
            with gr.Row():
                output1=gr.Image(label="Dreamlike-photoreal-2.0",show_label=False)
                output2=gr.Image(label="Dreamlike-photoreal-2.0",show_label=False)
        
    #with gr.Row():
        #output1=gr.Image()

        see_prompts.click(get_prompts, inputs=[input_text], outputs=[prompt], queue=False)
        run.click(send_it1, inputs=[prompt, noise_level], outputs=[output1])
        run.click(send_it2, inputs=[prompt, noise_level], outputs=[output2])
        


        with gr.Row():
                gr.HTML(
    """
        <div class="footer">
        <p> Demo for <a href="https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0">Dreamlike Photoreal 2.0</a> Stable Diffusion model
</p>
</div>
        <div class="acknowledgments" style="font-size: 115%">
            <p> Unleash your creative side and generate mesmerizing images with just a few clicks! Enter a spark of inspiration in the "Basic Idea" text box and click the "Magic Prompt" button to elevate it to a polished masterpiece. Make any final tweaks in the "Full Prompt" box and hit the "Generate Images" button to watch your vision come to life. Experiment with the "Noise Level" for a diverse range of outputs, from similar to wildly unique. Let the fun begin!
            </p>
        </div>
    """
)

    demo.launch(enable_queue=True, inline=True)
    block.queue(concurrency_count=100)