Spaces:
Runtime error
Runtime error
File size: 5,560 Bytes
33d271f 50f9d19 33d271f 92d8bdb 33d271f e411067 33d271f 06e88d2 5a7d557 06e88d2 3c715fd 5a7d557 c8b79d6 33d271f 75ca4f8 33d271f 75ca4f8 33d271f 13fff26 33d271f 13fff26 33d271f 13fff26 33d271f 13fff26 33d271f db8b594 33d271f 13fff26 33d271f db8b594 33d271f 13fff26 33d271f db8b594 33d271f 13fff26 33d271f db8b594 33d271f 13fff26 33d271f 13fff26 33d271f 13fff26 ab2f362 33d271f 50f9d19 33d271f 50f9d19 33d271f 50f9d19 33d271f 50f9d19 33d271f 06e88d2 259fe5c 453b6f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import gradio as gr
import os
import sys
from pathlib import Path
import random
import string
import time
from queue import Queue
from threading import Thread
text_gen=gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion")
proc1=gr.Interface.load("models/dreamlike-art/dreamlike-photoreal-2.0", live=True)
def reset_queue_periodically():
start_time = time.time()
while True:
if time.time() - start_time >= 120: # 5 minutes
queue.queue.clear()
start_time = time.time()
reset_queue_thread = Thread(target=reset_queue_periodically, daemon=True)
reset_queue_thread.start()
queue = Queue()
queue_threshold = 15
def add_random_noise(prompt, noise_level=0.07):
# Get the percentage of characters to add as noise
percentage_noise = noise_level * 5
# Get the number of characters to add as noise
num_noise_chars = int(len(prompt) * (percentage_noise/100))
# Get the indices of the characters to add noise to
noise_indices = random.sample(range(len(prompt)), num_noise_chars)
# Add noise to the selected characters
prompt_list = list(prompt)
noise_chars = string.ascii_letters + string.punctuation + ' '
for index in noise_indices:
prompt_list[index] = random.choice(noise_chars)
return "".join(prompt_list)
def send_it1(inputs, noise_level, proc1=proc1):
prompt_with_noise = add_random_noise(inputs, noise_level)
while queue.qsize() >= queue_threshold:
time.sleep(1)
queue.put(prompt_with_noise)
output1 = proc1(queue.get())
return output1
def send_it2(inputs, noise_level, proc1=proc1):
prompt_with_noise = add_random_noise(inputs, noise_level)
while queue.qsize() >= queue_threshold:
time.sleep(1)
queue.put(prompt_with_noise)
output2 = proc1(queue.get())
return output2
def send_it3(inputs, noise_level, proc1=proc1):
prompt_with_noise = add_random_noise(inputs, noise_level)
while queue.qsize() >= queue_threshold:
time.sleep(1)
queue.put(prompt_with_noise)
output3 = proc1(queue.get())
return output3
def send_it4(inputs, noise_level, proc1=proc1):
prompt_with_noise = add_random_noise(inputs, noise_level)
while queue.qsize() >= queue_threshold:
time.sleep(1)
queue.put(prompt_with_noise)
output4 = proc1(queue.get())
return output4
def send_it5(inputs, noise_level, proc1=proc1):
prompt_with_noise = add_random_noise(inputs, noise_level)
while queue.qsize() >= queue_threshold:
time.sleep(1)
queue.put(prompt_with_noise)
output5 = proc1(queue.get())
return output5
def send_it6(inputs, noise_level, proc1=proc1):
prompt_with_noise = add_random_noise(inputs, noise_level)
while queue.qsize() >= queue_threshold:
time.sleep(1)
queue.put(prompt_with_noise)
output6 = proc1(queue.get())
return output6
def send_it7(inputs, noise_level, proc1=proc1):
prompt_with_noise = add_random_noise(inputs, noise_level)
while queue.qsize() >= queue_threshold:
time.sleep(1)
queue.put(prompt_with_noise)
output7 = proc1(queue.get())
return output7
def send_it8(inputs, noise_level, proc1=proc1):
prompt_with_noise = add_random_noise(inputs, noise_level)
while queue.qsize() >= queue_threshold:
time.sleep(1)
queue.put(prompt_with_noise)
output8 = proc1(queue.get())
return output8
def get_prompts(prompt_text):
while queue.qsize() >= queue_threshold:
time.sleep(1)
queue.put(prompt_text)
output = text_gen(queue.get())
return output
with gr.Blocks() as myface:
with gr.Row():
input_text=gr.Textbox(label="Short Prompt")
see_prompts=gr.Button("Magic Prompt")
with gr.Row():
prompt=gr.Textbox(label="Enter Prompt")
noise_level=gr.Slider(minimum=0.1, maximum=3, step=0.1, label="Noise Level: Controls how much randomness is added to the input before it is sent to the model. Higher noise level produces more diverse outputs, while lower noise level produces similar outputs.")
run=gr.Button("Generate")
with gr.Row():
like_message = gr.Button("❤️ Press the Like Button if you enjoy my space! ❤️")
with gr.Row():
output1=gr.Image(label="Dreamlike-photoreal-2.0")
output2=gr.Image(label="Dreamlike-photoreal-2.0")
with gr.Row():
output3=gr.Image(label="Dreamlike-photoreal-2.0")
output4=gr.Image(label="Dreamlike-photoreal-2.0")
with gr.Row():
output5=gr.Image(label="Dreamlike-photoreal-2.0")
output6=gr.Image(label="Dreamlike-photoreal-2.0")
with gr.Row():
output7=gr.Image(label="Dreamlike-photoreal-2.0")
output8=gr.Image(label="Dreamlike-photoreal-2.0")
run.click(send_it1, inputs=[prompt, noise_level], outputs=[output1])
run.click(send_it2, inputs=[prompt, noise_level], outputs=[output2])
run.click(send_it3, inputs=[prompt, noise_level], outputs=[output3])
run.click(send_it4, inputs=[prompt, noise_level], outputs=[output4])
run.click(send_it5, inputs=[prompt, noise_level], outputs=[output5])
run.click(send_it6, inputs=[prompt, noise_level], outputs=[output6])
run.click(send_it7, inputs=[prompt, noise_level], outputs=[output7])
run.click(send_it8, inputs=[prompt, noise_level], outputs=[output8])
see_prompts.click(get_prompts, inputs=[input_text], outputs=[prompt])
myface.launch(enable_queue=True, inline=True)
block.queue(concurrency_count=15, max_size=30).launch(max_threads=20)
reset_queue_thread.join() |