File size: 6,503 Bytes
33d271f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25e6cac
33d271f
 
 
 
 
 
 
 
 
 
 
25e6cac
33d271f
 
 
 
 
 
 
 
 
 
 
25e6cac
33d271f
 
 
 
 
 
 
 
 
 
 
25e6cac
33d271f
db8b594
33d271f
 
 
 
 
 
d2f1af3
33d271f
 
25e6cac
33d271f
db8b594
33d271f
 
 
 
 
 
d2f1af3
33d271f
 
25e6cac
33d271f
db8b594
33d271f
 
 
 
 
 
d2f1af3
33d271f
 
25e6cac
33d271f
db8b594
33d271f
 
 
 
 
 
d2f1af3
33d271f
 
25e6cac
33d271f
 
 
 
 
 
 
 
 
 
 
 
25e6cac
33d271f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db8b594
 
33d271f
db8b594
 
33d271f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db8b594
33d271f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
import os 
import sys
from pathlib import Path
import random
import string
import time
from queue import Queue
queue = Queue()

text_gen=gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion")
proc1=gr.Interface.load("models/dreamlike-art/dreamlike-photoreal-2.0")

def reset_queue_periodically():
    start_time = time.time()
    while True:
        if time.time() - start_time > 300: # 300 seconds = 5 minutes
            queue.queue.clear()
            start_time = time.time()
        time.sleep(1)

def add_random_noise(prompt, noise_level=0.07):
    # Get the percentage of characters to add as noise
    percentage_noise = noise_level * 5
    # Get the number of characters to add as noise
    num_noise_chars = int(len(prompt) * (percentage_noise/100))
    # Get the indices of the characters to add noise to
    noise_indices = random.sample(range(len(prompt)), num_noise_chars)
    # Add noise to the selected characters
    prompt_list = list(prompt)
    for index in noise_indices:
        prompt_list[index] = random.choice(string.ascii_letters + string.punctuation)
    return "".join(prompt_list)

queue_length_counter = 0

def send_it1(inputs, noise_level, proc1=proc1):
    global queue_length_counter
    prompt_with_noise = add_random_noise(inputs, noise_level)
    if queue_length_counter >= 15:
        if not queue.empty():
            queue.queue.clear()
        queue_length_counter = 0
    output1 = proc1(prompt_with_noise)
    queue_length_counter += 1
    return output1
    time.sleep(2)

def send_it2(inputs, noise_level, proc1=proc1):
    global queue_length_counter
    prompt_with_noise = add_random_noise(inputs, noise_level)
    if queue_length_counter >= 15:
        if not queue.empty():
            queue.queue.clear()
        queue_length_counter = 0
    output2 = proc1(prompt_with_noise)
    queue_length_counter += 1
    return output2
    time.sleep(2)

def send_it3(inputs, noise_level, proc1=proc1):
    global queue_length_counter
    prompt_with_noise = add_random_noise(inputs, noise_level)
    if queue_length_counter >= 15:
        if not queue.empty():
            queue.queue.clear()
        queue_length_counter = 0
    output3 = proc1(prompt_with_noise)
    queue_length_counter += 1
    return output3
    time.sleep(2)

def send_it4(inputs, noise_level, proc1=proc1):
    global queue_length_counter
    prompt_with_noise = add_random_noise(inputs, noise_level)
    if queue_length_counter >= 15:
        if not queue.empty():
            queue.queue.clear()
        queue_length_counter = 0
    output4 = proc1(prompt_with_noise)
    queue_length_counter += 1
    return output4
    time.sleep(2)

def send_it5(inputs, noise_level, proc1=proc1):
    global queue_length_counter
    prompt_with_noise = add_random_noise(inputs, noise_level)
    if queue_length_counter >= 15:
        if not queue.empty():
            queue.queue.clear()
        queue_length_counter = 0
    output5 = proc1(prompt_with_noise)
    queue_length_counter += 1
    return output5
    time.sleep(2)

def send_it6(inputs, noise_level, proc1=proc1):
    global queue_length_counter
    prompt_with_noise = add_random_noise(inputs, noise_level)
    if queue_length_counter >= 15:
        if not queue.empty():
            queue.queue.clear()
        queue_length_counter = 0
    output6 = proc1(prompt_with_noise)
    queue_length_counter += 1
    return output6
    time.sleep(2)

def send_it7(inputs, noise_level, proc1=proc1):
    global queue_length_counter
    prompt_with_noise = add_random_noise(inputs, noise_level)
    if queue_length_counter >= 15:
        if not queue.empty():
            queue.queue.clear()
        queue_length_counter = 0
    output7 = proc1(prompt_with_noise)
    queue_length_counter += 1
    return output7
    time.sleep(2)

def send_it8(inputs, noise_level, proc1=proc1):
    global queue_length_counter
    prompt_with_noise = add_random_noise(inputs, noise_level)
    if queue_length_counter >= 15:
        if not queue.empty():
            queue.queue.clear()
        queue_length_counter = 0
    output8 = proc1(prompt_with_noise)
    queue_length_counter += 1
    return output8
    time.sleep(2)



def get_prompts(prompt_text):
    global queue_length_counter
    if queue_length_counter >= 15:
        if not queue.empty():
            queue.queue.clear()
        queue_length_counter = 0
    output = text_gen(prompt_text)
    queue_length_counter += 1
    return output
    time.sleep(2)


with gr.Blocks() as myface:
    with gr.Row():

        input_text=gr.Textbox(label="Short Prompt")
        see_prompts=gr.Button("Magic Prompt")
    with gr.Row():

        prompt=gr.Textbox(label="Enter Prompt")
        noise_level=gr.Slider(minimum=0.1, maximum=3, step=0.1, label="Noise Level: Controls how much randomness is added to the input before it is sent to the model. Higher noise level produces more diverse outputs, while lower noise level produces similar outputs.")
        run=gr.Button("Generate")

    with gr.Row():
        like_message = gr.Button("❤️ Press the Like Button if you enjoy my space! ❤️")
    with gr.Row():
        output1=gr.Image(label="Dreamlike Photoreal 2.0")
        output2=gr.Image(label="Dreamlike Photoreal 2.0")
    with gr.Row():
        output3=gr.Image(label="Dreamlike Photoreal 2.0")
        output4=gr.Image(label="Dreamlike Photoreal 2.0")
    with gr.Row():
        output5=gr.Image(label="Dreamlike Photoreal 2.0")
        output6=gr.Image(label="Dreamlike Photoreal 2.0")
    with gr.Row():
        output7=gr.Image(label="Dreamlike Photoreal 2.0")
        output8=gr.Image(label="Dreamlike Photoreal 2.0")

    
    run.click(send_it1, inputs=[prompt, noise_level], outputs=[output1])
    run.click(send_it2, inputs=[prompt, noise_level], outputs=[output2])
    run.click(send_it3, inputs=[prompt, noise_level], outputs=[output3])
    run.click(send_it4, inputs=[prompt, noise_level], outputs=[output4])
    run.click(send_it5, inputs=[prompt, noise_level], outputs=[output5])
    run.click(send_it6, inputs=[prompt, noise_level], outputs=[output6])
    run.click(send_it7, inputs=[prompt, noise_level], outputs=[output7])
    run.click(send_it8, inputs=[prompt, noise_level], outputs=[output8])
    see_prompts.click(get_prompts, inputs=[input_text], outputs=[prompt])



myface.queue(concurrency_count=8)
myface.launch(enable_queue=True, inline=True)
while True:
    if queue.qsize() >= 15:
        queue.queue.clear()
    time.sleep(30)