Spaces:
Running
on
A10G
Running
on
A10G
pharmapsychotic
commited on
Commit
•
95d3029
1
Parent(s):
ec4e754
Support both ViT-L and ViT-H!
Browse files- use clip-interrogator as pip package
- use huggingface_hub to download preprocessed files
- .gitignore +2 -0
- app.py +88 -228
- requirements.txt +6 -3
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
cache/
|
2 |
+
venv/
|
app.py
CHANGED
@@ -1,221 +1,71 @@
|
|
1 |
-
|
2 |
-
sys.path.append('src/blip')
|
3 |
-
sys.path.append('src/clip')
|
4 |
-
|
5 |
-
import clip
|
6 |
import gradio as gr
|
7 |
-
import hashlib
|
8 |
-
import math
|
9 |
-
import numpy as np
|
10 |
import os
|
11 |
-
import
|
12 |
-
import
|
13 |
-
import torchvision.transforms as T
|
14 |
-
import torchvision.transforms.functional as TF
|
15 |
-
|
16 |
-
from models.blip import blip_decoder
|
17 |
-
from PIL import Image
|
18 |
-
from torch import nn
|
19 |
-
from torch.nn import functional as F
|
20 |
-
from tqdm import tqdm
|
21 |
-
|
22 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
return [self.labels[i] for i in tops]
|
86 |
-
|
87 |
-
num_chunks = int(math.ceil(len(self.labels)/chunk_size))
|
88 |
-
keep_per_chunk = int(chunk_size / num_chunks)
|
89 |
-
|
90 |
-
top_labels, top_embeds = [], []
|
91 |
-
for chunk_idx in tqdm(range(num_chunks)):
|
92 |
-
start = chunk_idx*chunk_size
|
93 |
-
stop = min(start+chunk_size, len(self.embeds))
|
94 |
-
tops = self._rank(image_features, self.embeds[start:stop], top_count=keep_per_chunk)
|
95 |
-
top_labels.extend([self.labels[start+i] for i in tops])
|
96 |
-
top_embeds.extend([self.embeds[start+i] for i in tops])
|
97 |
-
|
98 |
-
tops = self._rank(image_features, top_embeds, top_count=top_count)
|
99 |
-
return [top_labels[i] for i in tops]
|
100 |
-
|
101 |
-
def generate_caption(pil_image):
|
102 |
-
gpu_image = T.Compose([
|
103 |
-
T.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=TF.InterpolationMode.BICUBIC),
|
104 |
-
T.ToTensor(),
|
105 |
-
T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
106 |
-
])(pil_image).unsqueeze(0).to(device)
|
107 |
-
|
108 |
-
with torch.no_grad():
|
109 |
-
caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5)
|
110 |
-
return caption[0]
|
111 |
-
|
112 |
-
def load_list(filename):
|
113 |
-
with open(filename, 'r', encoding='utf-8', errors='replace') as f:
|
114 |
-
items = [line.strip() for line in f.readlines()]
|
115 |
-
return items
|
116 |
-
|
117 |
-
def rank_top(image_features, text_array):
|
118 |
-
text_tokens = clip.tokenize([text for text in text_array]).to(device)
|
119 |
-
with torch.no_grad():
|
120 |
-
text_features = clip_model.encode_text(text_tokens).float()
|
121 |
-
text_features /= text_features.norm(dim=-1, keepdim=True)
|
122 |
-
|
123 |
-
similarity = torch.zeros((1, len(text_array)), device=device)
|
124 |
-
for i in range(image_features.shape[0]):
|
125 |
-
similarity += (image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
|
126 |
-
|
127 |
-
_, top_labels = similarity.cpu().topk(1, dim=-1)
|
128 |
-
return text_array[top_labels[0][0].numpy()]
|
129 |
-
|
130 |
-
def similarity(image_features, text):
|
131 |
-
text_tokens = clip.tokenize([text]).to(device)
|
132 |
-
with torch.no_grad():
|
133 |
-
text_features = clip_model.encode_text(text_tokens).float()
|
134 |
-
text_features /= text_features.norm(dim=-1, keepdim=True)
|
135 |
-
similarity = text_features.cpu().numpy() @ image_features.cpu().numpy().T
|
136 |
-
return similarity[0][0]
|
137 |
-
|
138 |
-
def interrogate(image):
|
139 |
-
caption = generate_caption(image)
|
140 |
-
|
141 |
-
images = clip_preprocess(image).unsqueeze(0).to(device)
|
142 |
-
with torch.no_grad():
|
143 |
-
image_features = clip_model.encode_image(images).float()
|
144 |
-
image_features /= image_features.norm(dim=-1, keepdim=True)
|
145 |
-
|
146 |
-
flaves = flavors.rank(image_features, flavor_intermediate_count)
|
147 |
-
best_medium = mediums.rank(image_features, 1)[0]
|
148 |
-
best_artist = artists.rank(image_features, 1)[0]
|
149 |
-
best_trending = trendings.rank(image_features, 1)[0]
|
150 |
-
best_movement = movements.rank(image_features, 1)[0]
|
151 |
-
|
152 |
-
best_prompt = caption
|
153 |
-
best_sim = similarity(image_features, best_prompt)
|
154 |
-
|
155 |
-
def check(addition):
|
156 |
-
nonlocal best_prompt, best_sim
|
157 |
-
prompt = best_prompt + ", " + addition
|
158 |
-
sim = similarity(image_features, prompt)
|
159 |
-
if sim > best_sim:
|
160 |
-
best_sim = sim
|
161 |
-
best_prompt = prompt
|
162 |
-
return True
|
163 |
-
return False
|
164 |
-
|
165 |
-
def check_multi_batch(opts):
|
166 |
-
nonlocal best_prompt, best_sim
|
167 |
-
prompts = []
|
168 |
-
for i in range(2**len(opts)):
|
169 |
-
prompt = best_prompt
|
170 |
-
for bit in range(len(opts)):
|
171 |
-
if i & (1 << bit):
|
172 |
-
prompt += ", " + opts[bit]
|
173 |
-
prompts.append(prompt)
|
174 |
-
|
175 |
-
prompt = rank_top(image_features, prompts)
|
176 |
-
sim = similarity(image_features, prompt)
|
177 |
-
if sim > best_sim:
|
178 |
-
best_sim = sim
|
179 |
-
best_prompt = prompt
|
180 |
-
|
181 |
-
check_multi_batch([best_medium, best_artist, best_trending, best_movement])
|
182 |
-
|
183 |
-
extended_flavors = set(flaves)
|
184 |
-
for _ in tqdm(range(25), desc="Flavor chain"):
|
185 |
-
try:
|
186 |
-
best = rank_top(image_features, [f"{best_prompt}, {f}" for f in extended_flavors])
|
187 |
-
flave = best[len(best_prompt)+2:]
|
188 |
-
if not check(flave):
|
189 |
-
break
|
190 |
-
extended_flavors.remove(flave)
|
191 |
-
except:
|
192 |
-
# exceeded max prompt length
|
193 |
-
break
|
194 |
-
|
195 |
-
return best_prompt
|
196 |
-
|
197 |
-
|
198 |
-
sites = ['Artstation', 'behance', 'cg society', 'cgsociety', 'deviantart', 'dribble', 'flickr', 'instagram', 'pexels', 'pinterest', 'pixabay', 'pixiv', 'polycount', 'reddit', 'shutterstock', 'tumblr', 'unsplash', 'zbrush central']
|
199 |
-
trending_list = [site for site in sites]
|
200 |
-
trending_list.extend(["trending on "+site for site in sites])
|
201 |
-
trending_list.extend(["featured on "+site for site in sites])
|
202 |
-
trending_list.extend([site+" contest winner" for site in sites])
|
203 |
-
|
204 |
-
raw_artists = load_list('data/artists.txt')
|
205 |
-
artists = [f"by {a}" for a in raw_artists]
|
206 |
-
artists.extend([f"inspired by {a}" for a in raw_artists])
|
207 |
-
|
208 |
-
artists = LabelTable(artists, "artists")
|
209 |
-
flavors = LabelTable(load_list('data/flavors.txt'), "flavors")
|
210 |
-
mediums = LabelTable(load_list('data/mediums.txt'), "mediums")
|
211 |
-
movements = LabelTable(load_list('data/movements.txt'), "movements")
|
212 |
-
trendings = LabelTable(trending_list, "trendings")
|
213 |
-
|
214 |
-
|
215 |
-
def inference(image):
|
216 |
-
return interrogate(image), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
217 |
-
|
218 |
-
title = """
|
219 |
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
220 |
<div
|
221 |
style="
|
@@ -234,7 +84,8 @@ title = """
|
|
234 |
</p>
|
235 |
</div>
|
236 |
"""
|
237 |
-
|
|
|
238 |
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
239 |
<p>
|
240 |
Example art by <a href="https://pixabay.com/illustrations/watercolour-painting-art-effect-4799014/">Layers</a>
|
@@ -255,19 +106,15 @@ article = """
|
|
255 |
</div>
|
256 |
"""
|
257 |
|
258 |
-
|
259 |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
260 |
a {text-decoration-line: underline; font-weight: 600;}
|
261 |
.animate-spin {
|
262 |
animation: spin 1s linear infinite;
|
263 |
}
|
264 |
@keyframes spin {
|
265 |
-
from {
|
266 |
-
|
267 |
-
}
|
268 |
-
to {
|
269 |
-
transform: rotate(360deg);
|
270 |
-
}
|
271 |
}
|
272 |
#share-btn-container {
|
273 |
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
|
@@ -287,11 +134,13 @@ a {text-decoration-line: underline; font-weight: 600;}
|
|
287 |
}
|
288 |
'''
|
289 |
|
290 |
-
with gr.Blocks(css=
|
291 |
with gr.Column(elem_id="col-container"):
|
292 |
-
gr.HTML(
|
293 |
|
294 |
input_image = gr.Image(type='pil', elem_id="input-img")
|
|
|
|
|
295 |
submit_btn = gr.Button("Submit")
|
296 |
output_text = gr.Textbox(label="Output", elem_id="output-txt")
|
297 |
|
@@ -300,13 +149,24 @@ with gr.Blocks(css=css) as block:
|
|
300 |
loading_icon = gr.HTML(loading_icon_html, visible=False)
|
301 |
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
|
302 |
|
303 |
-
examples=[['example01.jpg'], ['example02.jpg']]
|
304 |
-
ex = gr.Examples(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
ex.dataset.headers = [""]
|
306 |
|
307 |
-
gr.HTML(
|
308 |
|
309 |
-
submit_btn.click(
|
|
|
|
|
|
|
|
|
310 |
share_button.click(None, [], [], _js=share_js)
|
311 |
|
312 |
block.queue(max_size=32).launch(show_api=False)
|
|
|
1 |
+
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
|
|
|
|
|
|
3 |
import os
|
4 |
+
from clip_interrogator import Config, Interrogator
|
5 |
+
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
7 |
|
8 |
+
MODELS = ['ViT-L (best for Stable Diffusion 1.*)', 'ViT-H (best for Stable Diffusion 2.*)']
|
9 |
+
|
10 |
+
# download preprocessed files
|
11 |
+
PREPROCESS_FILES = [
|
12 |
+
'ViT-H-14_laion2b_s32b_b79k_artists.pkl',
|
13 |
+
'ViT-H-14_laion2b_s32b_b79k_flavors.pkl',
|
14 |
+
'ViT-H-14_laion2b_s32b_b79k_mediums.pkl',
|
15 |
+
'ViT-H-14_laion2b_s32b_b79k_movements.pkl',
|
16 |
+
'ViT-H-14_laion2b_s32b_b79k_trendings.pkl',
|
17 |
+
'ViT-L-14_openai_artists.pkl',
|
18 |
+
'ViT-L-14_openai_flavors.pkl',
|
19 |
+
'ViT-L-14_openai_mediums.pkl',
|
20 |
+
'ViT-L-14_openai_movements.pkl',
|
21 |
+
'ViT-L-14_openai_trendings.pkl',
|
22 |
+
]
|
23 |
+
print("Download preprocessed cache files...")
|
24 |
+
for file in PREPROCESS_FILES:
|
25 |
+
path = hf_hub_download(repo_id="pharma/ci-preprocess", filename=file, cache_dir="cache")
|
26 |
+
cache_path = os.path.dirname(path)
|
27 |
+
|
28 |
+
|
29 |
+
# load BLIP and ViT-L
|
30 |
+
config = Config(cache_path=cache_path, clip_model_path="cache", clip_model_name="ViT-L-14/openai")
|
31 |
+
ci_vitl = Interrogator(config)
|
32 |
+
ci_vitl.clip_model = ci_vitl.clip_model.to("cpu")
|
33 |
+
|
34 |
+
# load ViT-H
|
35 |
+
config.blip_model = ci_vitl.blip_model
|
36 |
+
config.clip_model_name = "ViT-H-14/laion2b_s32b_b79k"
|
37 |
+
ci_vith = Interrogator(config)
|
38 |
+
ci_vith.clip_model = ci_vith.clip_model.to("cpu")
|
39 |
+
|
40 |
+
|
41 |
+
def inference(image, clip_model_name, mode):
|
42 |
+
|
43 |
+
# move selected model to GPU and other model to CPU
|
44 |
+
if clip_model_name == MODELS[0]:
|
45 |
+
ci_vith.clip_model = ci_vith.clip_model.to("cpu")
|
46 |
+
ci_vitl.clip_model = ci_vitl.clip_model.to(ci_vitl.device)
|
47 |
+
ci = ci_vitl
|
48 |
+
else:
|
49 |
+
ci_vitl.clip_model = ci_vitl.clip_model.to("cpu")
|
50 |
+
ci_vith.clip_model = ci_vith.clip_model.to(ci_vith.device)
|
51 |
+
ci = ci_vith
|
52 |
+
|
53 |
+
ci.config.blip_num_beams = 64
|
54 |
+
ci.config.chunk_size = 2048
|
55 |
+
ci.config.flavor_intermediate_count = 2048 if clip_model_name == MODELS[0] else 1024
|
56 |
+
|
57 |
+
image = image.convert('RGB')
|
58 |
+
if mode == 'best':
|
59 |
+
prompt = ci.interrogate(image)
|
60 |
+
elif mode == 'classic':
|
61 |
+
prompt = ci.interrogate_classic(image)
|
62 |
+
else:
|
63 |
+
prompt = ci.interrogate_fast(image)
|
64 |
+
|
65 |
+
return prompt, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
66 |
+
|
67 |
+
|
68 |
+
TITLE = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
70 |
<div
|
71 |
style="
|
|
|
84 |
</p>
|
85 |
</div>
|
86 |
"""
|
87 |
+
|
88 |
+
ARTICLE = """
|
89 |
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
90 |
<p>
|
91 |
Example art by <a href="https://pixabay.com/illustrations/watercolour-painting-art-effect-4799014/">Layers</a>
|
|
|
106 |
</div>
|
107 |
"""
|
108 |
|
109 |
+
CSS = '''
|
110 |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
111 |
a {text-decoration-line: underline; font-weight: 600;}
|
112 |
.animate-spin {
|
113 |
animation: spin 1s linear infinite;
|
114 |
}
|
115 |
@keyframes spin {
|
116 |
+
from { transform: rotate(0deg); }
|
117 |
+
to { transform: rotate(360deg); }
|
|
|
|
|
|
|
|
|
118 |
}
|
119 |
#share-btn-container {
|
120 |
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
|
|
|
134 |
}
|
135 |
'''
|
136 |
|
137 |
+
with gr.Blocks(css=CSS) as block:
|
138 |
with gr.Column(elem_id="col-container"):
|
139 |
+
gr.HTML(TITLE)
|
140 |
|
141 |
input_image = gr.Image(type='pil', elem_id="input-img")
|
142 |
+
input_model = gr.Dropdown(MODELS, value=MODELS[0], label='CLIP Model')
|
143 |
+
input_mode = gr.Radio(['best', 'fast'], value='best', label='Mode')
|
144 |
submit_btn = gr.Button("Submit")
|
145 |
output_text = gr.Textbox(label="Output", elem_id="output-txt")
|
146 |
|
|
|
149 |
loading_icon = gr.HTML(loading_icon_html, visible=False)
|
150 |
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
|
151 |
|
152 |
+
examples=[['example01.jpg', MODELS[0], 'best'], ['example02.jpg', MODELS[0], 'best']]
|
153 |
+
ex = gr.Examples(
|
154 |
+
examples=examples,
|
155 |
+
fn=inference,
|
156 |
+
inputs=[input_image, input_model, input_mode],
|
157 |
+
outputs=[output_text, share_button, community_icon, loading_icon],
|
158 |
+
cache_examples=True,
|
159 |
+
run_on_click=True
|
160 |
+
)
|
161 |
ex.dataset.headers = [""]
|
162 |
|
163 |
+
gr.HTML(ARTICLE)
|
164 |
|
165 |
+
submit_btn.click(
|
166 |
+
fn=inference,
|
167 |
+
inputs=[input_image, input_model, input_mode],
|
168 |
+
outputs=[output_text, share_button, community_icon, loading_icon]
|
169 |
+
)
|
170 |
share_button.click(None, [], [], _js=share_js)
|
171 |
|
172 |
block.queue(max_size=32).launch(show_api=False)
|
requirements.txt
CHANGED
@@ -1,11 +1,14 @@
|
|
1 |
-
--extra-index-url https://download.pytorch.org/whl/
|
2 |
torch
|
3 |
torchvision
|
4 |
|
5 |
fairscale
|
6 |
ftfy
|
|
|
|
|
7 |
Pillow
|
8 |
timm
|
9 |
transformers==4.15.0
|
10 |
-
|
11 |
-
-
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu117
|
2 |
torch
|
3 |
torchvision
|
4 |
|
5 |
fairscale
|
6 |
ftfy
|
7 |
+
gradio
|
8 |
+
huggingface-hub
|
9 |
Pillow
|
10 |
timm
|
11 |
transformers==4.15.0
|
12 |
+
open_clip_torch
|
13 |
+
clip-interrogator==0.3.1
|
14 |
+
-e git+https://github.com/pharmapsychotic/BLIP.git@lib#egg=blip
|