Spaces:
Runtime error
Runtime error
optional - Use retinaface for face detection (#7)
Browse files- optional - Use retinaface for face detection (c57f7aedf4dedc338af570caaecc4cee74d7f2bc)
- remove print (478af14d5268d7cec5efefcc368bee4c9e99b9f7)
Co-authored-by: Radamés Ajna <[email protected]>
- app.py +29 -19
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,27 +1,30 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import dlib
|
4 |
import numpy as np
|
5 |
import PIL
|
6 |
import base64
|
7 |
from io import BytesIO
|
8 |
from PIL import Image
|
9 |
-
#
|
10 |
-
import
|
11 |
|
12 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
13 |
from diffusers import UniPCMultistepScheduler
|
14 |
|
15 |
from spiga.inference.config import ModelConfig
|
16 |
from spiga.inference.framework import SPIGAFramework
|
|
|
17 |
|
18 |
import matplotlib.pyplot as plt
|
19 |
from matplotlib.path import Path
|
20 |
import matplotlib.patches as patches
|
21 |
|
22 |
# Bounding boxes
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
# Landmark extraction
|
26 |
spiga_extractor = SPIGAFramework(ModelConfig("300wpublic"))
|
27 |
|
@@ -59,14 +62,19 @@ async (image_in_img, prompt, image_file_live_opt, live_conditioning) => {
|
|
59 |
}
|
60 |
"""
|
61 |
|
|
|
62 |
def get_bounding_box(image):
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
|
71 |
|
72 |
def get_landmarks(image, bbox):
|
@@ -145,7 +153,6 @@ def get_conditioning(image):
|
|
145 |
def generate_images(image_in_img, prompt, image_file_live_opt='file', live_conditioning=None):
|
146 |
if image_in_img is None and 'image' not in live_conditioning:
|
147 |
raise gr.Error("Please provide an image")
|
148 |
-
|
149 |
try:
|
150 |
if image_file_live_opt == 'file':
|
151 |
conditioning = get_conditioning(image_in_img)
|
@@ -166,29 +173,31 @@ def generate_images(image_in_img, prompt, image_file_live_opt='file', live_condi
|
|
166 |
except Exception as e:
|
167 |
raise gr.Error(str(e))
|
168 |
|
|
|
169 |
def toggle(choice):
|
170 |
if choice == "file":
|
171 |
return gr.update(visible=True, value=None), gr.update(visible=False, value=None)
|
172 |
elif choice == "webcam":
|
173 |
return gr.update(visible=False, value=None), gr.update(visible=True, value=canvas_html)
|
174 |
|
|
|
175 |
with gr.Blocks() as blocks:
|
176 |
gr.Markdown("""
|
177 |
## Generate Uncanny Faces with ControlNet Stable Diffusion
|
178 |
[Check out our blog to see how this was done (and train your own controlnet)](https://huggingface.co/blog/train-your-controlnet)
|
179 |
""")
|
180 |
with gr.Row():
|
181 |
-
live_conditioning
|
182 |
with gr.Column():
|
183 |
image_file_live_opt = gr.Radio(["file", "webcam"], value="file",
|
184 |
-
|
185 |
image_in_img = gr.Image(source="upload", visible=True, type="pil")
|
186 |
canvas = gr.HTML(None, elem_id="canvas_html", visible=False)
|
187 |
|
188 |
image_file_live_opt.change(fn=toggle,
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
prompt = gr.Textbox(
|
193 |
label="Enter your prompt",
|
194 |
max_lines=1,
|
@@ -198,7 +207,8 @@ with gr.Blocks() as blocks:
|
|
198 |
with gr.Column():
|
199 |
gallery = gr.Gallery().style(grid=[2], height="auto")
|
200 |
run_button.click(fn=generate_images,
|
201 |
-
inputs=[image_in_img, prompt,
|
|
|
202 |
outputs=[gallery],
|
203 |
_js=get_js_image)
|
204 |
blocks.load(None, None, None, _js=load_js)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
import numpy as np
|
4 |
import PIL
|
5 |
import base64
|
6 |
from io import BytesIO
|
7 |
from PIL import Image
|
8 |
+
# import for face detection
|
9 |
+
import retinaface
|
10 |
|
11 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
12 |
from diffusers import UniPCMultistepScheduler
|
13 |
|
14 |
from spiga.inference.config import ModelConfig
|
15 |
from spiga.inference.framework import SPIGAFramework
|
16 |
+
import spiga.demo.analyze.track.retinasort.config as cfg
|
17 |
|
18 |
import matplotlib.pyplot as plt
|
19 |
from matplotlib.path import Path
|
20 |
import matplotlib.patches as patches
|
21 |
|
22 |
# Bounding boxes
|
23 |
+
config = cfg.cfg_retinasort
|
24 |
+
face_detector = retinaface.RetinaFaceDetector(model=config['retina']['model_name'],
|
25 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
26 |
+
extra_features=config['retina']['extra_features'],
|
27 |
+
cfg_postreat=config['retina']['postreat'])
|
28 |
# Landmark extraction
|
29 |
spiga_extractor = SPIGAFramework(ModelConfig("300wpublic"))
|
30 |
|
|
|
62 |
}
|
63 |
"""
|
64 |
|
65 |
+
|
66 |
def get_bounding_box(image):
|
67 |
+
pil_image = Image.fromarray(image)
|
68 |
+
face_detector.set_input_shape(pil_image.size[1], pil_image.size[0])
|
69 |
+
features = face_detector.inference(pil_image)
|
70 |
+
|
71 |
+
if (features is None) and (len(features['bbox']) <= 0):
|
72 |
+
raise Exception("No face detected")
|
73 |
+
# get the first face detected
|
74 |
+
bbox = features['bbox'][0]
|
75 |
+
x1, y1, x2, y2 = bbox[:4]
|
76 |
+
bbox_wh = [x1, y1, x2-x1, y2-y1]
|
77 |
+
return bbox_wh
|
78 |
|
79 |
|
80 |
def get_landmarks(image, bbox):
|
|
|
153 |
def generate_images(image_in_img, prompt, image_file_live_opt='file', live_conditioning=None):
|
154 |
if image_in_img is None and 'image' not in live_conditioning:
|
155 |
raise gr.Error("Please provide an image")
|
|
|
156 |
try:
|
157 |
if image_file_live_opt == 'file':
|
158 |
conditioning = get_conditioning(image_in_img)
|
|
|
173 |
except Exception as e:
|
174 |
raise gr.Error(str(e))
|
175 |
|
176 |
+
|
177 |
def toggle(choice):
|
178 |
if choice == "file":
|
179 |
return gr.update(visible=True, value=None), gr.update(visible=False, value=None)
|
180 |
elif choice == "webcam":
|
181 |
return gr.update(visible=False, value=None), gr.update(visible=True, value=canvas_html)
|
182 |
|
183 |
+
|
184 |
with gr.Blocks() as blocks:
|
185 |
gr.Markdown("""
|
186 |
## Generate Uncanny Faces with ControlNet Stable Diffusion
|
187 |
[Check out our blog to see how this was done (and train your own controlnet)](https://huggingface.co/blog/train-your-controlnet)
|
188 |
""")
|
189 |
with gr.Row():
|
190 |
+
live_conditioning = gr.JSON(value={}, visible=False)
|
191 |
with gr.Column():
|
192 |
image_file_live_opt = gr.Radio(["file", "webcam"], value="file",
|
193 |
+
label="How would you like to upload your image?")
|
194 |
image_in_img = gr.Image(source="upload", visible=True, type="pil")
|
195 |
canvas = gr.HTML(None, elem_id="canvas_html", visible=False)
|
196 |
|
197 |
image_file_live_opt.change(fn=toggle,
|
198 |
+
inputs=[image_file_live_opt],
|
199 |
+
outputs=[image_in_img, canvas],
|
200 |
+
queue=False)
|
201 |
prompt = gr.Textbox(
|
202 |
label="Enter your prompt",
|
203 |
max_lines=1,
|
|
|
207 |
with gr.Column():
|
208 |
gallery = gr.Gallery().style(grid=[2], height="auto")
|
209 |
run_button.click(fn=generate_images,
|
210 |
+
inputs=[image_in_img, prompt,
|
211 |
+
image_file_live_opt, live_conditioning],
|
212 |
outputs=[gallery],
|
213 |
_js=get_js_image)
|
214 |
blocks.load(None, None, None, _js=load_js)
|
requirements.txt
CHANGED
@@ -7,3 +7,4 @@ dlib
|
|
7 |
opencv-python
|
8 |
matplotlib
|
9 |
Pillow
|
|
|
|
7 |
opencv-python
|
8 |
matplotlib
|
9 |
Pillow
|
10 |
+
retinaface-py>=0.0.2
|