|
import torch.nn as nn |
|
|
|
class LinearBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(LinearBlock, self).__init__() |
|
self.linear_block = nn.Sequential( |
|
nn.Linear(in_channels, out_channels), |
|
nn.BatchNorm1d(out_channels), |
|
nn.LeakyReLU() |
|
) |
|
|
|
def forward(self, x): |
|
x = self.linear_block(x) |
|
return x |
|
|
|
class FracClassifier(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
encoder_channels, |
|
classifier_channels=(256, 128, 64), |
|
final_channels=2, |
|
linear_kernel=4096, |
|
p = 0. |
|
): |
|
super(FracClassifier, self).__init__() |
|
|
|
|
|
self.linear_kernel = linear_kernel |
|
self.initial_conv = nn.Conv3d(encoder_channels, 256, kernel_size=3,stride=1, padding=1) |
|
self.bn_init = nn.InstanceNorm3d(256, affine=True) |
|
self.drop_1 = nn.Dropout(p=p) |
|
|
|
self.initial_conv1 = nn.Conv3d(256, 128, kernel_size=3,stride=1, padding=1) |
|
self.bn_init1 = nn.InstanceNorm3d(128, affine=True) |
|
self.drop_2 = nn.Dropout(p=p) |
|
|
|
self.initial_conv2 = nn.Conv3d(128, 64, kernel_size=3,stride=1, padding=1) |
|
self.bn_init2 = nn.InstanceNorm3d(64, affine=True) |
|
self.drop_3 = nn.Dropout(p=p) |
|
|
|
self.initial_conv3 = nn.Conv3d(64, 8, kernel_size=3,stride=1, padding=1) |
|
self.bn_init3 = nn.InstanceNorm3d(8, affine=True) |
|
self.drop_4 = nn.Dropout(p=p) |
|
|
|
self.vector_shape = encoder_channels |
|
self.layer1 = LinearBlock(self.linear_kernel, classifier_channels[0]) |
|
self.drop_5 = nn.Dropout(p=p) |
|
|
|
self.layer2 = LinearBlock(classifier_channels[0], classifier_channels[1]) |
|
self.drop_6 = nn.Dropout(p=p) |
|
|
|
self.layer3 = LinearBlock(classifier_channels[1], classifier_channels[2]) |
|
self.drop_7 = nn.Dropout(p=p) |
|
|
|
self.final_dense = nn.Linear(classifier_channels[2], final_channels) |
|
|
|
|
|
|
|
def forward(self, x): |
|
x = self.initial_conv(x) |
|
x = self.drop_1(self.bn_init(x)) |
|
|
|
x = self.initial_conv1(x) |
|
x = self.drop_2(self.bn_init1(x)) |
|
|
|
x = self.initial_conv2(x) |
|
x = self.drop_3(self.bn_init2(x)) |
|
|
|
x = self.initial_conv3(x) |
|
x = self.drop_4(self.bn_init3(x)) |
|
|
|
x = x.view(x.shape[0], -1) |
|
|
|
x = self.drop_5(self.layer1(x)) |
|
x = self.drop_6(self.layer2(x)) |
|
x = self.drop_7(self.layer3(x)) |
|
x = self.final_dense(x) |
|
|
|
return x |