import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Inicjalizacja InferenceClient client = InferenceClient("01-ai/Yi-Coder-9B-Chat") # Inicjalizacja tokenizera i modelu model_path = "01-ai/Yi-Coder-9B-Chat" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval() def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, use_local_model: bool, ): # Przygotowanie wiadomości do kontekstu messages = [{"role": "system", "content": system_message}] for user, assistant in history: if user: messages.append({"role": "user", "content": user}) if assistant: messages.append({"role": "assistant", "content": assistant}) messages.append({"role": "user", "content": message}) if use_local_model: # Użycie lokalnego modelu input_text = "\n".join([f"{m['role']}: {m['content']}" for m in messages]) input_ids = tokenizer.encode(input_text, return_tensors="pt") input_ids = input_ids.to(model.device) with torch.no_grad(): output = model.generate( input_ids, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, pad_token_id=tokenizer.eos_token_id, ) response = tokenizer.decode(output[0], skip_special_tokens=True) yield response.split("assistant:")[-1].strip() else: # Użycie Hugging Face Inference API response = "" for chunk in client.text_generation( "\n".join([f"{m['role']}: {m['content']}" for m in messages]), max_new_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): response += chunk yield response.split("assistant:")[-1].strip() # Tworzenie interfejsu Gradio demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="Odpowiadasz w języku polskim. Jesteś Coder/Developer/Programista i tworzysz pełny kod.", label="Wiadomość systemowa" ), gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Maksymalna liczba nowych tokenów"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperatura"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (próbkowanie nucleus)", ), gr.Checkbox(label="Użyj lokalnego modelu", value=False), ], title="Zaawansowany interfejs czatu AI", description="Czatuj z modelem AI, korzystając z Hugging Face Inference API lub lokalnego modelu.", ) if __name__ == "__main__": demo.launch()