Dressfit / densepose /data /dataset_mapper.py
IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame
7.02 kB
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import logging
from typing import Any, Dict, List, Tuple
import torch
from detectron2.data import MetadataCatalog
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from detectron2.layers import ROIAlign
from detectron2.structures import BoxMode
from detectron2.utils.file_io import PathManager
from densepose.structures import DensePoseDataRelative, DensePoseList, DensePoseTransformData
def build_augmentation(cfg, is_train):
logger = logging.getLogger(__name__)
result = utils.build_augmentation(cfg, is_train)
if is_train:
random_rotation = T.RandomRotation(
cfg.INPUT.ROTATION_ANGLES, expand=False, sample_style="choice"
)
result.append(random_rotation)
logger.info("DensePose-specific augmentation used in training: " + str(random_rotation))
return result
class DatasetMapper:
"""
A customized version of `detectron2.data.DatasetMapper`
"""
def __init__(self, cfg, is_train=True):
self.augmentation = build_augmentation(cfg, is_train)
# fmt: off
self.img_format = cfg.INPUT.FORMAT
self.mask_on = (
cfg.MODEL.MASK_ON or (
cfg.MODEL.DENSEPOSE_ON
and cfg.MODEL.ROI_DENSEPOSE_HEAD.COARSE_SEGM_TRAINED_BY_MASKS)
)
self.keypoint_on = cfg.MODEL.KEYPOINT_ON
self.densepose_on = cfg.MODEL.DENSEPOSE_ON
assert not cfg.MODEL.LOAD_PROPOSALS, "not supported yet"
# fmt: on
if self.keypoint_on and is_train:
# Flip only makes sense in training
self.keypoint_hflip_indices = utils.create_keypoint_hflip_indices(cfg.DATASETS.TRAIN)
else:
self.keypoint_hflip_indices = None
if self.densepose_on:
densepose_transform_srcs = [
MetadataCatalog.get(ds).densepose_transform_src
for ds in cfg.DATASETS.TRAIN + cfg.DATASETS.TEST
]
assert len(densepose_transform_srcs) > 0
# TODO: check that DensePose transformation data is the same for
# all the datasets. Otherwise one would have to pass DB ID with
# each entry to select proper transformation data. For now, since
# all DensePose annotated data uses the same data semantics, we
# omit this check.
densepose_transform_data_fpath = PathManager.get_local_path(densepose_transform_srcs[0])
self.densepose_transform_data = DensePoseTransformData.load(
densepose_transform_data_fpath
)
self.is_train = is_train
def __call__(self, dataset_dict):
"""
Args:
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
Returns:
dict: a format that builtin models in detectron2 accept
"""
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
utils.check_image_size(dataset_dict, image)
image, transforms = T.apply_transform_gens(self.augmentation, image)
image_shape = image.shape[:2] # h, w
dataset_dict["image"] = torch.as_tensor(image.transpose(2, 0, 1).astype("float32"))
if not self.is_train:
dataset_dict.pop("annotations", None)
return dataset_dict
for anno in dataset_dict["annotations"]:
if not self.mask_on:
anno.pop("segmentation", None)
if not self.keypoint_on:
anno.pop("keypoints", None)
# USER: Implement additional transformations if you have other types of data
# USER: Don't call transpose_densepose if you don't need
annos = [
self._transform_densepose(
utils.transform_instance_annotations(
obj, transforms, image_shape, keypoint_hflip_indices=self.keypoint_hflip_indices
),
transforms,
)
for obj in dataset_dict.pop("annotations")
if obj.get("iscrowd", 0) == 0
]
if self.mask_on:
self._add_densepose_masks_as_segmentation(annos, image_shape)
instances = utils.annotations_to_instances(annos, image_shape, mask_format="bitmask")
densepose_annotations = [obj.get("densepose") for obj in annos]
if densepose_annotations and not all(v is None for v in densepose_annotations):
instances.gt_densepose = DensePoseList(
densepose_annotations, instances.gt_boxes, image_shape
)
dataset_dict["instances"] = instances[instances.gt_boxes.nonempty()]
return dataset_dict
def _transform_densepose(self, annotation, transforms):
if not self.densepose_on:
return annotation
# Handle densepose annotations
is_valid, reason_not_valid = DensePoseDataRelative.validate_annotation(annotation)
if is_valid:
densepose_data = DensePoseDataRelative(annotation, cleanup=True)
densepose_data.apply_transform(transforms, self.densepose_transform_data)
annotation["densepose"] = densepose_data
else:
# logger = logging.getLogger(__name__)
# logger.debug("Could not load DensePose annotation: {}".format(reason_not_valid))
DensePoseDataRelative.cleanup_annotation(annotation)
# NOTE: annotations for certain instances may be unavailable.
# 'None' is accepted by the DensePostList data structure.
annotation["densepose"] = None
return annotation
def _add_densepose_masks_as_segmentation(
self, annotations: List[Dict[str, Any]], image_shape_hw: Tuple[int, int]
):
for obj in annotations:
if ("densepose" not in obj) or ("segmentation" in obj):
continue
# DP segmentation: torch.Tensor [S, S] of float32, S=256
segm_dp = torch.zeros_like(obj["densepose"].segm)
segm_dp[obj["densepose"].segm > 0] = 1
segm_h, segm_w = segm_dp.shape
bbox_segm_dp = torch.tensor((0, 0, segm_h - 1, segm_w - 1), dtype=torch.float32)
# image bbox
x0, y0, x1, y1 = (
v.item() for v in BoxMode.convert(obj["bbox"], obj["bbox_mode"], BoxMode.XYXY_ABS)
)
segm_aligned = (
ROIAlign((y1 - y0, x1 - x0), 1.0, 0, aligned=True)
.forward(segm_dp.view(1, 1, *segm_dp.shape), bbox_segm_dp)
.squeeze()
)
image_mask = torch.zeros(*image_shape_hw, dtype=torch.float32)
image_mask[y0:y1, x0:x1] = segm_aligned
# segmentation for BitMask: np.array [H, W] of bool
obj["segmentation"] = image_mask >= 0.5