|
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
|
|
from transformers import AutoModelForSequenceClassification
|
|
from transformers import AutoTokenizer
|
|
from langdetect import detect
|
|
from newspaper import Article
|
|
from PIL import Image
|
|
import streamlit as st
|
|
import requests
|
|
import torch
|
|
|
|
st.markdown("## Prediction of Fakeness by Given URL")
|
|
background = Image.open('logo.jpg')
|
|
st.image(background)
|
|
|
|
st.markdown(f"### Article URL")
|
|
text = st.text_area("Insert some url here",
|
|
value="https://en.globes.co.il/en/article-yandex-looks-to-expand-activities-in-israel-1001406519")
|
|
|
|
@st.cache(allow_output_mutation=True)
|
|
def get_models_and_tokenizers():
|
|
model_name = 'distilbert-base-uncased-finetuned-sst-2-english'
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
|
model.eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model.load_state_dict(torch.load('./model.pth', map_location='cpu'))
|
|
|
|
model_name_translator = "facebook/wmt19-ru-en"
|
|
tokenizer_translator = FSMTTokenizer.from_pretrained(model_name_translator)
|
|
model_translator = FSMTForConditionalGeneration.from_pretrained(model_name_translator)
|
|
model_translator.eval()
|
|
return model, tokenizer, model_translator, tokenizer_translator
|
|
|
|
model, tokenizer, model_translator, tokenizer_translator = get_models_and_tokenizers()
|
|
|
|
article = Article(text)
|
|
article.download()
|
|
article.parse()
|
|
concated_text = article.title + '. ' + article.text
|
|
lang = detect(concated_text)
|
|
|
|
st.markdown(f"### Language detection")
|
|
|
|
if lang == 'ru':
|
|
st.markdown(f"The language of this article is {lang.upper()} so we translated it!")
|
|
with st.spinner('Waiting for translation'):
|
|
input_ids = tokenizer_translator.encode(concated_text,
|
|
return_tensors="pt", max_length=512, truncation=True)
|
|
outputs = model_translator.generate(input_ids)
|
|
decoded = tokenizer_translator.decode(outputs[0], skip_special_tokens=True)
|
|
st.markdown("### Translated Text")
|
|
st.markdown(f"{decoded[:777]}")
|
|
concated_text = decoded
|
|
else:
|
|
st.markdown(f"The language of this article for sure: {lang.upper()}!")
|
|
|
|
st.markdown("### Extracted Text")
|
|
st.markdown(f"{concated_text[:777]}")
|
|
|
|
tokens_info = tokenizer(concated_text, truncation=True, return_tensors="pt")
|
|
with torch.no_grad():
|
|
raw_predictions = model(**tokens_info)
|
|
softmaxed = int(torch.nn.functional.softmax(raw_predictions.logits[0], dim=0)[1] * 100)
|
|
st.markdown("### Fakeness Prediction")
|
|
st.progress(softmaxed)
|
|
st.markdown(f"This is fake by **{softmaxed}%**!")
|
|
if (softmaxed > 70):
|
|
st.error('We would not trust this text!')
|
|
elif (softmaxed > 40):
|
|
st.warning('We are not sure about this text!')
|
|
else:
|
|
st.success('We would trust this text!') |