Spaces:
Runtime error
Runtime error
feat: add support of cafe_aesthetic
Browse files- LICENSE +21 -0
- README.md +8 -3
- __pycache__/predictor.cpython-310.pyc +0 -0
- app.py +61 -1
- predictor.py +23 -0
- requirements.txt +9 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 Plat
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: yellow
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
@@ -9,4 +9,9 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Waifu Aesthetics
|
3 |
+
emoji: 🧂☕
|
4 |
colorFrom: yellow
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
Original repos:
|
13 |
+
|
14 |
+
- https://huggingface.co/cafeai/cafe_aesthetic
|
15 |
+
- https://huggingface.co/saltacc/beit-bestimage-salt
|
16 |
+
|
17 |
+
About BEiT: https://huggingface.co/docs/transformers/v4.30.0/en/model_doc/beit#beit
|
__pycache__/predictor.cpython-310.pyc
ADDED
Binary file (1.11 kB). View file
|
|
app.py
CHANGED
@@ -1,3 +1,63 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
from predictor import Predictor
|
6 |
+
|
7 |
+
MODEL_SALT_BESTIMAGE = "saltacc/beit-bestimage-salt"
|
8 |
+
MODEL_CAFE_AESTHETIC = "cafeai/cafe_aesthetic"
|
9 |
+
|
10 |
+
MODEL_NAMES = [
|
11 |
+
MODEL_SALT_BESTIMAGE,
|
12 |
+
MODEL_CAFE_AESTHETIC,
|
13 |
+
]
|
14 |
+
|
15 |
+
models = {
|
16 |
+
MODEL_SALT_BESTIMAGE: Predictor(MODEL_SALT_BESTIMAGE),
|
17 |
+
MODEL_CAFE_AESTHETIC: Predictor(MODEL_CAFE_AESTHETIC),
|
18 |
+
}
|
19 |
+
|
20 |
+
|
21 |
+
def predict(image: Image.Image) -> list[dict[str, float]]:
|
22 |
+
results = []
|
23 |
+
|
24 |
+
for model_name in MODEL_NAMES:
|
25 |
+
results.append(models[model_name].predict([image])[0])
|
26 |
+
|
27 |
+
return results
|
28 |
+
|
29 |
+
|
30 |
+
def construct_ui():
|
31 |
+
with gr.Blocks() as ui:
|
32 |
+
with gr.Row():
|
33 |
+
with gr.Column():
|
34 |
+
input_image = gr.Image(
|
35 |
+
label="Input Image",
|
36 |
+
type="pil",
|
37 |
+
source="upload",
|
38 |
+
interactive=True,
|
39 |
+
)
|
40 |
+
|
41 |
+
submit_btn = gr.Button(
|
42 |
+
value="Submit",
|
43 |
+
variant="primary",
|
44 |
+
)
|
45 |
+
|
46 |
+
with gr.Column():
|
47 |
+
result_salt = gr.Label(
|
48 |
+
label=MODEL_SALT_BESTIMAGE,
|
49 |
+
)
|
50 |
+
|
51 |
+
result_cafe = gr.Label(
|
52 |
+
label=MODEL_CAFE_AESTHETIC,
|
53 |
+
)
|
54 |
+
|
55 |
+
submit_btn.click(
|
56 |
+
predict, inputs=[input_image], outputs=[result_salt, result_cafe]
|
57 |
+
)
|
58 |
+
|
59 |
+
return ui
|
60 |
+
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
construct_ui().launch()
|
predictor.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
|
3 |
+
from transformers import BeitImageProcessor, BeitForImageClassification
|
4 |
+
|
5 |
+
|
6 |
+
class Predictor:
|
7 |
+
def __init__(self, model_id: str) -> None:
|
8 |
+
self.processor = BeitImageProcessor.from_pretrained(model_id)
|
9 |
+
self.model = BeitForImageClassification.from_pretrained(model_id)
|
10 |
+
|
11 |
+
def predict(self, images: list[Image.Image]) -> list[dict[str, float]]:
|
12 |
+
inputs = self.processor(images, return_tensors="pt")
|
13 |
+
logits = self.model(**inputs).logits.softmax(1) # 一応見た目が良いのでsoftmaxをかける
|
14 |
+
|
15 |
+
results = []
|
16 |
+
|
17 |
+
for scores in logits:
|
18 |
+
result = {}
|
19 |
+
for i, score in enumerate(scores):
|
20 |
+
result[self.model.config.id2label[i]] = score.item()
|
21 |
+
results.append(result)
|
22 |
+
|
23 |
+
return results
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate
|
2 |
+
diffusers
|
3 |
+
transformers
|
4 |
+
scipy
|
5 |
+
omegaconf
|
6 |
+
safetensors
|
7 |
+
numpy
|
8 |
+
opencv-python
|
9 |
+
torch
|