Spaces:
Sleeping
Sleeping
osanseviero
commited on
Commit
•
a2d1102
1
Parent(s):
30ab7f6
Update app.py
Browse files
app.py
CHANGED
@@ -3,15 +3,14 @@ import mediapipe as mp
|
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
|
6 |
-
title = "
|
7 |
-
description = " Demo for
|
8 |
article = "<p style='text-align: center'><a href='https://google.github.io/mediapipe/solutions/face_detection.html' target='_blank'>Mediapipe Face Detection</a> | <a href='https://github.com/google/mediapipe' target='_blank'>Github Repo</a></p>"
|
9 |
|
10 |
mp_face_detection = mp.solutions.face_detection
|
11 |
mp_drawing = mp.solutions.drawing_utils
|
12 |
|
13 |
-
def
|
14 |
-
|
15 |
height, width, _ = image.shape
|
16 |
|
17 |
output_img = image.copy()
|
@@ -29,8 +28,7 @@ def draw_huggingfaces(image, results):
|
|
29 |
return output_img
|
30 |
|
31 |
|
32 |
-
def
|
33 |
-
|
34 |
with mp_face_detection.FaceDetection(
|
35 |
model_selection=0,
|
36 |
min_detection_confidence=0.5) as face_detection:
|
@@ -45,14 +43,11 @@ huggingface_image = cv2.imread("images/hugging-face.png", cv2.IMREAD_UNCHANGED)
|
|
45 |
huggingface_image = cv2.cvtColor(huggingface_image, cv2.COLOR_BGRA2RGBA)
|
46 |
huggingface_landmarks = np.array([[747,697],[1289,697],[1022,1116]], dtype=np.float32)
|
47 |
|
48 |
-
webcam_image = gr.inputs.Image(label="Input Image", source="webcam")
|
49 |
-
output_image = gr.outputs.Image(label="Output Image")
|
50 |
|
51 |
-
gr.Interface(
|
52 |
-
|
53 |
-
|
54 |
-
outputs=output_image,
|
55 |
title=title,
|
56 |
description=description,
|
57 |
-
article=article
|
58 |
|
|
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
|
6 |
+
title = "Mishigify Me"
|
7 |
+
description = " Demo for adding some mishig to this"
|
8 |
article = "<p style='text-align: center'><a href='https://google.github.io/mediapipe/solutions/face_detection.html' target='_blank'>Mediapipe Face Detection</a> | <a href='https://github.com/google/mediapipe' target='_blank'>Github Repo</a></p>"
|
9 |
|
10 |
mp_face_detection = mp.solutions.face_detection
|
11 |
mp_drawing = mp.solutions.drawing_utils
|
12 |
|
13 |
+
def draw_mishigs(image, results):
|
|
|
14 |
height, width, _ = image.shape
|
15 |
|
16 |
output_img = image.copy()
|
|
|
28 |
return output_img
|
29 |
|
30 |
|
31 |
+
def mishig_me(image):
|
|
|
32 |
with mp_face_detection.FaceDetection(
|
33 |
model_selection=0,
|
34 |
min_detection_confidence=0.5) as face_detection:
|
|
|
43 |
huggingface_image = cv2.cvtColor(huggingface_image, cv2.COLOR_BGRA2RGBA)
|
44 |
huggingface_landmarks = np.array([[747,697],[1289,697],[1022,1116]], dtype=np.float32)
|
45 |
|
|
|
|
|
46 |
|
47 |
+
gr.Interface(mishig_me,
|
48 |
+
inputs=gr.Image(label="Input Image", source="webcam"),
|
49 |
+
outputs=gr.Image(label="Output Image"),
|
|
|
50 |
title=title,
|
51 |
description=description,
|
52 |
+
article=article).launch()
|
53 |
|