Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
[Code] Update leaderboard
Browse files- .gitignore +2 -0
- app.py +20 -3
- gen_table.py +19 -7
- meta_data.py +4 -2
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*ipynb
|
2 |
+
__pycache__
|
app.py
CHANGED
@@ -1,11 +1,24 @@
|
|
1 |
import abc
|
2 |
-
|
3 |
import gradio as gr
|
4 |
|
5 |
from gen_table import *
|
6 |
from meta_data import *
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
struct = load_results()
|
10 |
timestamp = struct['time']
|
11 |
EVAL_TIME = format_timestamp(timestamp)
|
@@ -55,10 +68,11 @@ with gr.Blocks() as demo:
|
|
55 |
type='pandas',
|
56 |
datatype=[type_map[x] for x in headers],
|
57 |
interactive=False,
|
|
|
58 |
visible=True)
|
59 |
|
60 |
def filter_df(fields, model_size, model_type):
|
61 |
-
filter_list = ['Avg Score', 'Avg Rank', 'OpenSource'
|
62 |
headers = ['Rank'] + check_box['essential'] + fields
|
63 |
|
64 |
new_fields = [field for field in fields if field not in filter_list]
|
@@ -78,6 +92,7 @@ with gr.Blocks() as demo:
|
|
78 |
type='pandas',
|
79 |
datatype=[type_map[x] for x in headers],
|
80 |
interactive=False,
|
|
|
81 |
visible=True)
|
82 |
return comp
|
83 |
|
@@ -124,6 +139,7 @@ with gr.Blocks() as demo:
|
|
124 |
type='pandas',
|
125 |
datatype=[s.type_map[x] for x in s.headers],
|
126 |
interactive=False,
|
|
|
127 |
visible=True)
|
128 |
s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)
|
129 |
|
@@ -145,6 +161,7 @@ with gr.Blocks() as demo:
|
|
145 |
type='pandas',
|
146 |
datatype=[s.type_map[x] for x in headers],
|
147 |
interactive=False,
|
|
|
148 |
visible=True)
|
149 |
return comp
|
150 |
|
|
|
1 |
import abc
|
|
|
2 |
import gradio as gr
|
3 |
|
4 |
from gen_table import *
|
5 |
from meta_data import *
|
6 |
|
7 |
+
# import pandas as pd
|
8 |
+
# pd.set_option('display.max_colwidth', 0)
|
9 |
+
|
10 |
+
head_style = """
|
11 |
+
<style>
|
12 |
+
@media (min-width: 1536px)
|
13 |
+
{
|
14 |
+
.gradio-container {
|
15 |
+
min-width: var(--size-full) !important;
|
16 |
+
}
|
17 |
+
}
|
18 |
+
</style>
|
19 |
+
"""
|
20 |
+
|
21 |
+
with gr.Blocks(title="Open VLM Leaderboard", head=head_style) as demo:
|
22 |
struct = load_results()
|
23 |
timestamp = struct['time']
|
24 |
EVAL_TIME = format_timestamp(timestamp)
|
|
|
68 |
type='pandas',
|
69 |
datatype=[type_map[x] for x in headers],
|
70 |
interactive=False,
|
71 |
+
wrap=True,
|
72 |
visible=True)
|
73 |
|
74 |
def filter_df(fields, model_size, model_type):
|
75 |
+
filter_list = ['Avg Score', 'Avg Rank', 'OpenSource']
|
76 |
headers = ['Rank'] + check_box['essential'] + fields
|
77 |
|
78 |
new_fields = [field for field in fields if field not in filter_list]
|
|
|
92 |
type='pandas',
|
93 |
datatype=[type_map[x] for x in headers],
|
94 |
interactive=False,
|
95 |
+
wrap=True,
|
96 |
visible=True)
|
97 |
return comp
|
98 |
|
|
|
139 |
type='pandas',
|
140 |
datatype=[s.type_map[x] for x in s.headers],
|
141 |
interactive=False,
|
142 |
+
wrap=True,
|
143 |
visible=True)
|
144 |
s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)
|
145 |
|
|
|
161 |
type='pandas',
|
162 |
datatype=[s.type_map[x] for x in headers],
|
163 |
interactive=False,
|
164 |
+
wrap=True,
|
165 |
visible=True)
|
166 |
return comp
|
167 |
|
gen_table.py
CHANGED
@@ -54,16 +54,14 @@ def model_size_flag(sz, FIELDS):
|
|
54 |
def model_type_flag(line, FIELDS):
|
55 |
if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes':
|
56 |
return True
|
57 |
-
if 'API' in FIELDS and line['OpenSource'] == 'No'
|
58 |
-
return True
|
59 |
-
if 'Proprietary' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'No':
|
60 |
return True
|
61 |
return False
|
62 |
|
63 |
|
64 |
def BUILD_L1_DF(results, fields):
|
65 |
check_box = {}
|
66 |
-
check_box['essential'] = ['Method', 'Param (B)', 'Language Model', 'Vision Model']
|
67 |
# revise there to set default dataset
|
68 |
check_box['required'] = ['Avg Score', 'Avg Rank'] + DEFAULT_BENCH
|
69 |
check_box['avg'] = ['Avg Score', 'Avg Rank']
|
@@ -71,7 +69,8 @@ def BUILD_L1_DF(results, fields):
|
|
71 |
type_map = defaultdict(lambda: 'number')
|
72 |
type_map['Method'] = 'html'
|
73 |
type_map['Language Model'] = type_map['Vision Model'] = 'html'
|
74 |
-
type_map['OpenSource'] =
|
|
|
75 |
check_box['type_map'] = type_map
|
76 |
|
77 |
df = generate_table(results, fields)
|
@@ -105,6 +104,12 @@ def BUILD_L2_DF(results, dataset):
|
|
105 |
elif k == 'Method':
|
106 |
name, url = meta['Method']
|
107 |
res[k].append(f'<a href="{url}">{name}</a>')
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
else:
|
109 |
res[k].append(meta[k])
|
110 |
fields = [x for x in fields]
|
@@ -128,13 +133,14 @@ def BUILD_L2_DF(results, dataset):
|
|
128 |
df = df.iloc[::-1]
|
129 |
|
130 |
check_box = {}
|
131 |
-
check_box['essential'] = ['Method', 'Param (B)', 'Language Model', 'Vision Model']
|
132 |
check_box['required'] = required_fields
|
133 |
check_box['all'] = all_fields
|
134 |
type_map = defaultdict(lambda: 'number')
|
135 |
type_map['Method'] = 'html'
|
136 |
type_map['Language Model'] = type_map['Vision Model'] = 'html'
|
137 |
-
type_map['OpenSource'] =
|
|
|
138 |
check_box['type_map'] = type_map
|
139 |
return df, check_box
|
140 |
|
@@ -159,6 +165,12 @@ def generate_table(results, fields):
|
|
159 |
name, url = meta['Method']
|
160 |
res[k].append(f'<a href="{url}">{name}</a>')
|
161 |
res['name'].append(name)
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
else:
|
163 |
res[k].append(meta[k])
|
164 |
scores, ranks = [], []
|
|
|
54 |
def model_type_flag(line, FIELDS):
|
55 |
if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes':
|
56 |
return True
|
57 |
+
if 'API' in FIELDS and line['OpenSource'] == 'No':
|
|
|
|
|
58 |
return True
|
59 |
return False
|
60 |
|
61 |
|
62 |
def BUILD_L1_DF(results, fields):
|
63 |
check_box = {}
|
64 |
+
check_box['essential'] = ['Method', 'Param (B)', 'Language Model', 'Vision Model', 'Eval Date']
|
65 |
# revise there to set default dataset
|
66 |
check_box['required'] = ['Avg Score', 'Avg Rank'] + DEFAULT_BENCH
|
67 |
check_box['avg'] = ['Avg Score', 'Avg Rank']
|
|
|
69 |
type_map = defaultdict(lambda: 'number')
|
70 |
type_map['Method'] = 'html'
|
71 |
type_map['Language Model'] = type_map['Vision Model'] = 'html'
|
72 |
+
type_map['OpenSource'] = 'str'
|
73 |
+
type_map['Eval Date'] = 'str'
|
74 |
check_box['type_map'] = type_map
|
75 |
|
76 |
df = generate_table(results, fields)
|
|
|
104 |
elif k == 'Method':
|
105 |
name, url = meta['Method']
|
106 |
res[k].append(f'<a href="{url}">{name}</a>')
|
107 |
+
elif k == 'Eval Date':
|
108 |
+
eval_date = meta['Time'].split('/')
|
109 |
+
assert len(eval_date) == 3
|
110 |
+
eval_date = [x if len(x) > 1 else '0' + x for x in eval_date]
|
111 |
+
eval_date = '/'.join(eval_date)
|
112 |
+
res[k].append(eval_date)
|
113 |
else:
|
114 |
res[k].append(meta[k])
|
115 |
fields = [x for x in fields]
|
|
|
133 |
df = df.iloc[::-1]
|
134 |
|
135 |
check_box = {}
|
136 |
+
check_box['essential'] = ['Method', 'Param (B)', 'Language Model', 'Vision Model', 'Eval Date']
|
137 |
check_box['required'] = required_fields
|
138 |
check_box['all'] = all_fields
|
139 |
type_map = defaultdict(lambda: 'number')
|
140 |
type_map['Method'] = 'html'
|
141 |
type_map['Language Model'] = type_map['Vision Model'] = 'html'
|
142 |
+
type_map['OpenSource'] = 'str'
|
143 |
+
type_map['Eval Date'] = 'str'
|
144 |
check_box['type_map'] = type_map
|
145 |
return df, check_box
|
146 |
|
|
|
165 |
name, url = meta['Method']
|
166 |
res[k].append(f'<a href="{url}">{name}</a>')
|
167 |
res['name'].append(name)
|
168 |
+
elif k == 'Eval Date':
|
169 |
+
eval_date = meta['Time'].split('/')
|
170 |
+
assert len(eval_date) == 3
|
171 |
+
eval_date = [x if len(x) > 1 else '0' + x for x in eval_date]
|
172 |
+
eval_date = '/'.join(eval_date)
|
173 |
+
res[k].append(eval_date)
|
174 |
else:
|
175 |
res[k].append(meta[k])
|
176 |
scores, ranks = [], []
|
meta_data.py
CHANGED
@@ -20,7 +20,9 @@ This leaderboard was last updated: {}.
|
|
20 |
OpenVLM Leaderboard only includes open-source VLMs or API models that are publicly available. To add your own model to the leaderboard, please create a PR in [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) to support your VLM and then we will help with the evaluation and updating the leaderboard. For any questions or concerns, please feel free to contact us at [opencompass, duanhaodong]@pjlab.org.cn.
|
21 |
"""
|
22 |
# CONSTANTS-FIELDS
|
23 |
-
META_FIELDS = [
|
|
|
|
|
24 |
MAIN_FIELDS = [
|
25 |
'MMBench_V11', 'MMStar', 'MME',
|
26 |
'MMMU_VAL', 'MathVista', 'OCRBench', 'AI2D',
|
@@ -34,7 +36,7 @@ DEFAULT_BENCH = [
|
|
34 |
]
|
35 |
MMBENCH_FIELDS = ['MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11', 'MMBench_TEST_EN', 'MMBench_TEST_CN', 'CCBench']
|
36 |
MODEL_SIZE = ['<4B', '4B-10B', '10B-20B', '20B-40B', '>40B', 'Unknown']
|
37 |
-
MODEL_TYPE = ['API', 'OpenSource'
|
38 |
|
39 |
# The README file for each benchmark
|
40 |
LEADERBOARD_MD = {}
|
|
|
20 |
OpenVLM Leaderboard only includes open-source VLMs or API models that are publicly available. To add your own model to the leaderboard, please create a PR in [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) to support your VLM and then we will help with the evaluation and updating the leaderboard. For any questions or concerns, please feel free to contact us at [opencompass, duanhaodong]@pjlab.org.cn.
|
21 |
"""
|
22 |
# CONSTANTS-FIELDS
|
23 |
+
META_FIELDS = [
|
24 |
+
'Method', 'Param (B)', 'Language Model', 'Vision Model', 'OpenSource', 'Eval Date'
|
25 |
+
]
|
26 |
MAIN_FIELDS = [
|
27 |
'MMBench_V11', 'MMStar', 'MME',
|
28 |
'MMMU_VAL', 'MathVista', 'OCRBench', 'AI2D',
|
|
|
36 |
]
|
37 |
MMBENCH_FIELDS = ['MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11', 'MMBench_TEST_EN', 'MMBench_TEST_CN', 'CCBench']
|
38 |
MODEL_SIZE = ['<4B', '4B-10B', '10B-20B', '20B-40B', '>40B', 'Unknown']
|
39 |
+
MODEL_TYPE = ['API', 'OpenSource']
|
40 |
|
41 |
# The README file for each benchmark
|
42 |
LEADERBOARD_MD = {}
|