osanseviero commited on
Commit
cbcafc2
1 Parent(s): 9c19948

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -0
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+
4
+ import torch
5
+ from tqdm.auto import tqdm
6
+
7
+ from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
8
+ from point_e.diffusion.sampler import PointCloudSampler
9
+ from point_e.models.download import load_checkpoint
10
+ from point_e.models.configs import MODEL_CONFIGS, model_from_config
11
+ from point_e.util.plotting import plot_point_cloud
12
+
13
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
14
+
15
+ print('creating base model...')
16
+ base_name = 'base40M-textvec'
17
+ base_model = model_from_config(MODEL_CONFIGS[base_name], device)
18
+ base_model.eval()
19
+ base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name])
20
+
21
+ print('creating upsample model...')
22
+ upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
23
+ upsampler_model.eval()
24
+ upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
25
+
26
+ print('downloading base checkpoint...')
27
+ base_model.load_state_dict(load_checkpoint(base_name, device))
28
+
29
+ print('downloading upsampler checkpoint...')
30
+ upsampler_model.load_state_dict(load_checkpoint('upsample', device))
31
+
32
+ sampler = PointCloudSampler(
33
+ device=device,
34
+ models=[base_model, upsampler_model],
35
+ diffusions=[base_diffusion, upsampler_diffusion],
36
+ num_points=[1024, 4096 - 1024],
37
+ aux_channels=['R', 'G', 'B'],
38
+ guidance_scale=[3.0, 0.0],
39
+ model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
40
+ )
41
+
42
+ def inference(prompt):
43
+ samples = None
44
+ for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[prompt])):
45
+ samples = x
46
+ pc = sampler.output_to_point_clouds(samples)[0]
47
+ pc = sampler.output_to_point_clouds(samples)[0]
48
+ fig = plot_point_cloud(pc, grid_size=3, fixed_bounds=((-0.75, -0.75, -0.75),(0.75, 0.75, 0.75)))
49
+ return fig
50
+
51
+ demo = gr.Interface(fn=inference, inputs="text", outputs=gr.Plot())
52
+ demo.launch(debug=True)