File size: 8,792 Bytes
983012f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
007ad5c
983012f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
from gradio.components import Textbox, Slider, Plot
import numpy as np
import matplotlib.pyplot as plt
from tqdm.auto import tqdm

plt.style.use('seaborn-v0_8-whitegrid')

columns = ["difficulty", "stability", "retrievability", "delta_t",
           "reps", "lapses", "last_date", "due", "ivl", "cost", "rand"]
col = {key: i for i, key in enumerate(columns)}


def simulate(w, request_retention=0.9, deck_size=10000, learn_span=100, max_cost_perday=200, max_ivl=36500, recall_cost=10, forget_cost=30, learn_cost=10):
    card_table = np.zeros((len(columns), deck_size))
    card_table[col["due"]] = learn_span
    card_table[col["difficulty"]] = 1e-10
    card_table[col["stability"]] = 1e-10

    review_cnt_per_day = np.zeros(learn_span)
    learn_cnt_per_day = np.zeros(learn_span)
    memorized_cnt_per_day = np.zeros(learn_span)

    def cal_next_recall_stability(s, r, d, response):
        if response == 1:
            return s * (1 + np.exp(w[8]) * (11 - d) * np.power(s, -w[9]) * (np.exp((1 - r) * w[10]) - 1))
        else:
            return np.minimum(w[11] * np.power(d, -w[12]) * (np.power(s + 1, w[13]) - 1) * np.exp((1 - r) * w[14]), s)

    for today in tqdm(range(learn_span)):
        has_learned = card_table[col["stability"]] > 1e-10
        card_table[col["delta_t"]][has_learned] = today - \
            card_table[col["last_date"]][has_learned]
        card_table[col["retrievability"]][has_learned] = np.power(
            1 + card_table[col["delta_t"]][has_learned] / (9 * card_table[col["stability"]][has_learned]), -1)

        card_table[col["cost"]] = 0
        need_review = card_table[col["due"]] <= today
        card_table[col["rand"]][need_review] = np.random.rand(
            np.sum(need_review))
        forget = card_table[col["rand"]] > card_table[col["retrievability"]]
        card_table[col["cost"]][need_review & forget] = forget_cost
        card_table[col["cost"]][need_review & ~forget] = recall_cost
        true_review = need_review & (
            np.cumsum(card_table[col["cost"]]) <= max_cost_perday)
        card_table[col["last_date"]][true_review] = today

        card_table[col["lapses"]][true_review & forget] += 1
        card_table[col["reps"]][true_review & ~forget] += 1

        card_table[col["stability"]][true_review & forget] = cal_next_recall_stability(
            card_table[col["stability"]][true_review & forget], card_table[col["retrievability"]][true_review & forget], card_table[col["difficulty"]][true_review & forget], 0)

        card_table[col["stability"]][true_review & ~forget] = cal_next_recall_stability(
            card_table[col["stability"]][true_review & ~forget], card_table[col["retrievability"]][true_review & ~forget], card_table[col["difficulty"]][true_review & ~forget], 1)

        card_table[col["difficulty"]][true_review & forget] = np.clip(
            card_table[col["difficulty"]][true_review & forget] + 2 * w[6], 1, 10)

        need_learn = card_table[col["due"]] == learn_span
        card_table[col["cost"]][need_learn] = learn_cost
        true_learn = need_learn & (
            np.cumsum(card_table[col["cost"]]) <= max_cost_perday)
        card_table[col["last_date"]][true_learn] = today
        first_ratings = np.random.randint(0, 4, np.sum(true_learn))
        card_table[col["stability"]][true_learn] = np.choose(
            first_ratings, w[:4])
        card_table[col["difficulty"]][true_learn] = w[4] - \
            w[5] * (first_ratings - 3)

        card_table[col["ivl"]][true_review | true_learn] = np.clip(np.round(
            9 * card_table[col["stability"]][true_review | true_learn] * (1 / request_retention - 1), 0), 1, max_ivl)
        card_table[col["due"]][true_review | true_learn] = today + \
            card_table[col["ivl"]][true_review | true_learn]

        review_cnt_per_day[today] = np.sum(true_review)
        learn_cnt_per_day[today] = np.sum(true_learn)
        memorized_cnt_per_day[today] = card_table[col["retrievability"]].sum()
    return card_table, review_cnt_per_day, learn_cnt_per_day, memorized_cnt_per_day


def interface_func(weights: str, learning_time: int, learn_span: int, deck_size: int, max_ivl: int, recall_cost: int, forget_cost: int, learn_cost: int,
                   progress=gr.Progress(track_tqdm=True)):
    plt.close('all')
    np.random.seed(42)
    w = list(map(lambda x: float(x.strip()), weights.split(',')))
    max_cost_perday = learning_time * 60

    def moving_average(data, window_size=learn_span//20):
        weights = np.ones(window_size) / window_size
        return np.convolve(data, weights, mode='valid')

    for request_retention in [0.95, 0.9, 0.85, 0.8, 0.75]:
        (_,
         review_cnt_per_day,
         learn_cnt_per_day,
         memorized_cnt_per_day) = simulate(w,
                                           request_retention=request_retention,
                                           deck_size=deck_size,
                                           learn_span=learn_span,
                                           max_cost_perday=max_cost_perday,
                                           max_ivl=max_ivl,
                                           recall_cost=recall_cost,
                                           forget_cost=forget_cost,
                                           learn_cost=learn_cost)

        plt.figure(1)
        plt.plot(moving_average(review_cnt_per_day),
                 label=f"R={request_retention*100:.0f}%")
        plt.title("Review Count per Day")
        plt.legend()
        plt.figure(2)
        plt.plot(moving_average(learn_cnt_per_day),
                 label=f"R={request_retention*100:.0f}%")
        plt.title("Learn Count per Day")
        plt.legend()
        plt.figure(3)
        plt.plot(np.cumsum(learn_cnt_per_day),
                 label=f"R={request_retention*100:.0f}%")
        plt.title("Cumulative Learn Count")
        plt.legend()
        plt.figure(4)
        plt.plot(memorized_cnt_per_day,
                 label=f"R={request_retention*100:.0f}%")
        plt.title("Memorized Count per Day")
        plt.legend()

    return plt.figure(1), plt.figure(2), plt.figure(3), plt.figure(4)

description = f"""
# FSRS4Anki Simulator

Here is a simulator for FSRS4Anki. It can simulate the learning process of a deck with given weights and parameters. 

It will help you to find the expected requestRetention for FSRS4Anki.

The simulator assumes that you spend the same amount of time on Anki every day.
"""

with gr.Blocks() as demo:
    with gr.Box():
        gr.Markdown(description)
    with gr.Box():
        with gr.Row():
            with gr.Column():
                weights = Textbox(label="Weights", lines=1,
                                  value="0.4, 0.6, 2.4, 5.8, 4.93, 0.94, 0.86, 0.01, 1.49, 0.14, 0.94, 2.18, 0.05, 0.34, 1.26, 0.29, 2.61")
                learning_time = Slider(label="Learning Time perday (minutes)",
                                       minimum=5, maximum=1440, step=5, value=30)
                learn_span = Slider(label="Learning Period (days)", minimum=30,
                                    maximum=3650, step=10, value=365)
                deck_size = Slider(label="Deck Size (cards)", minimum=100,
                                   maximum=100000, step=100, value=10000)
            with gr.Column():
                max_ivl = Slider(label="Maximum Interval (days)", minimum=30,
                                 maximum=36500, step=10, value=36500)
                recall_cost = Slider(label="Review Cost (seconds)", minimum=1,
                                     maximum=600, step=1, value=10)
                forget_cost = Slider(label="Relearn Cost (seconds)",
                                     minimum=1, maximum=600, step=1, value=30)
                learn_cost = Slider(label="Learn Cost (seconds)", minimum=1,
                                    maximum=600, step=1, value=10)
        with gr.Row():
            btn_plot = gr.Button("Simulate")
        with gr.Row():
            with gr.Column():
                review_count = Plot(label="Review Count per Day")
                learn_count = Plot(label="Learn Count per Day")
            with gr.Column():
                cumulative_learn_count = Plot(label="Cumulative Learn Count")
                memorized_count = Plot(label="Memorized Count per Day")

    btn_plot.click(
        fn=interface_func,
        inputs=[weights,
                learning_time,
                learn_span,
                deck_size,
                max_ivl,
                recall_cost,
                forget_cost,
                learn_cost,
                ],
        outputs=[review_count, learn_count,
                cumulative_learn_count, memorized_count],
    )

demo.queue().launch(show_error=True)