comparator / src /results.py
albertvillanova's picture
Fix loading message in case of timeout error
966ae7b verified
import asyncio
import shutil
import tempfile
import gradio as gr
import pandas as pd
import plotly.express as px
import src.constants as constants
from src.hub import glob, load_json_file
def load_result_paths_per_model():
return sort_result_paths_per_model(fetch_result_paths())
def fetch_result_paths():
path = f"{constants.RESULTS_DATASET_ID}/**/**/*.json"
return glob(path)
def sort_result_paths_per_model(paths):
from collections import defaultdict
d = defaultdict(list)
for path in paths:
model_id, _ = path[len(constants.RESULTS_DATASET_ID) + 1 :].rsplit("/", 1)
d[model_id].append(path)
return {model_id: sorted(paths) for model_id, paths in d.items()}
async def load_results_dataframe(model_id, result_paths_per_model=None):
if not model_id or not result_paths_per_model:
return
result_paths = result_paths_per_model[model_id]
results = await asyncio.gather(*[load_json_file(path) for path in result_paths])
results = [result for result in results if result]
if not results:
return
data = {"results": {}, "configs": {}}
for result in results:
data["results"].update(result["results"])
data["configs"].update(result["configs"])
model_name = result.get("model_name", "Model")
df = pd.json_normalize([data])
# df.columns = df.columns.str.split(".") # .split return a list instead of a tuple
return df.set_index(pd.Index([model_name]))
async def load_results(result_paths_per_model, *model_ids_lists):
dfs = await asyncio.gather(
*[
load_results_dataframe(model_id, result_paths_per_model)
for model_ids in model_ids_lists
if model_ids
for model_id in model_ids
]
)
dfs = [df for df in dfs if df is not None]
if dfs:
return pd.concat(dfs), None
else:
return None, None
def display_results(df, task, hide_std_errors, show_only_differences):
if df is None:
return None, None
df = df.T.rename_axis(columns=None)
return (
display_tab("results", df, task, hide_std_errors=hide_std_errors),
display_tab("configs", df, task, show_only_differences=show_only_differences),
)
def display_tab(tab, df, task, hide_std_errors=True, show_only_differences=False):
if show_only_differences:
any_difference = df.ne(df.iloc[:, 0], axis=0).any(axis=1)
df = df.style.format(escape="html", na_rep="")
# Hide rows
df.hide(
[
row
for row in df.index
if (
not row.startswith(f"{tab}.")
or row.startswith(f"{tab}.leaderboard.")
or row.endswith(".alias")
or (
not row.startswith(f"{tab}.{task}")
if task != "All"
else row.startswith(f"{tab}.leaderboard_arc_challenge") # Hide legacy ARC
)
# Hide MATH fewshot_config.samples: <function list_fewshot_samples at 0x7f34d199ab90>
or (row.startswith(f"{tab}.leaderboard_math") and row.endswith("fewshot_config.samples"))
# Hide std errors
or (hide_std_errors and row.endswith("_stderr,none"))
# Hide non-different rows
or (show_only_differences and not any_difference[row])
)
],
axis="index",
)
# Color metric result cells
idx = pd.IndexSlice
colored_rows = idx[
[
row
for row in df.index
if row.endswith("acc,none") or row.endswith("acc_norm,none") or row.endswith("exact_match,none")
]
] # Apply only on numeric cells, otherwise the background gradient will not work
subset = idx[colored_rows, idx[:]]
df.background_gradient(cmap="PiYG", vmin=0, vmax=1, subset=subset, axis=None)
# Format index values: remove prefix and suffix
start = len(f"{tab}.leaderboard_") if task == "All" else len(f"{tab}.{task} ")
df.format_index(lambda idx: idx[start:].removesuffix(",none"), axis="index")
# Fix overflow
df.set_table_styles(
[
{
"selector": "td",
"props": [("overflow-wrap", "break-word"), ("max-width", "1px")],
},
{
"selector": ".col_heading",
"props": [("width", f"{100 / len(df.columns)}%")],
},
]
)
return df.to_html()
def update_tasks_component():
return (
gr.Radio(
["All"] + list(constants.TASKS.values()),
label="Tasks",
info="Evaluation tasks to be displayed",
value="All",
visible=True,
),
) * 2
def clear_results():
# model_ids, dataframe, load_results_btn, load_configs_btn, results_task, configs_task
return (
gr.Dropdown(value=[]),
None,
*(gr.Button("Load", interactive=False),) * 2,
*(
gr.Radio(
["All"] + list(constants.TASKS.values()),
label="Tasks",
info="Evaluation tasks to be displayed",
value="All",
visible=False,
),
)
* 2,
)
def display_loading_message_for_results():
return ("<h3 style='text-align: center;'>Loading...</h3>",) * 2
def plot_results(df, task):
if df is not None:
df = df[
[
col
for col in df.columns
if col.startswith("results.")
and (col.endswith("acc,none") or col.endswith("acc_norm,none") or col.endswith("exact_match,none"))
]
]
tasks = {key: tupl[0] for key, tupl in constants.TASKS.items()}
tasks["leaderboard_math"] = tasks["leaderboard_math_hard"]
subtasks = {tupl[1]: tupl[0] for tupl in constants.SUBTASKS.get(task, [])}
if task == "All":
df = df[[col for col in df.columns if col.split(".")[1] in tasks]]
# - IFEval: Calculate average of both strict accuracies
ifeval_mean = df[
[
"results.leaderboard_ifeval.inst_level_strict_acc,none",
"results.leaderboard_ifeval.prompt_level_strict_acc,none",
]
].mean(axis=1)
df = df.drop(columns=[col for col in df.columns if col.split(".")[1] == "leaderboard_ifeval"])
loc = df.columns.get_loc("results.leaderboard_math_hard.exact_match,none")
df.insert(loc - 1, "results.leaderboard_ifeval", ifeval_mean)
# Rename
df = df.rename(columns=lambda col: tasks[col.split(".")[1]])
else:
df = df[[col for col in df.columns if col.startswith(f"results.{task}")]]
# - IFEval: Return 4 accuracies
if task == "leaderboard_ifeval":
df = df.rename(columns=lambda col: col.split(".")[2].removesuffix(",none"))
else:
df = df.rename(columns=lambda col: tasks.get(col.split(".")[1], subtasks.get(col.split(".")[1])))
fig_1 = px.bar(
df.T.rename_axis(columns="Model"),
barmode="group",
labels={"index": "Benchmark" if task == "All" else "Subtask", "value": "Score"},
color_discrete_sequence=px.colors.qualitative.Safe, # TODO: https://plotly.com/python/discrete-color/
)
fig_1.update_yaxes(range=[0, 1])
fig_2 = px.line_polar(
df.melt(ignore_index=False, var_name="Benchmark", value_name="Score").reset_index(names="Model"),
r="Score",
theta="Benchmark",
color="Model",
line_close=True,
range_r=[0, 1],
color_discrete_sequence=px.colors.qualitative.Safe, # TODO: https://plotly.com/python/discrete-color/
)
# Avoid bug with radar:
fig_2.update_layout(
title_text="",
title_font_size=1,
)
return fig_1, fig_2
else:
return None, None
tmpdirname = None
def download_results(results):
global tmpdirname
if results:
if tmpdirname:
shutil.rmtree(tmpdirname)
tmpdirname = tempfile.mkdtemp()
path = f"{tmpdirname}/results.html"
with open(path, "w") as f:
f.write(results)
return gr.File(path, visible=True)
def clear_results_file():
global tmpdirname
if tmpdirname:
shutil.rmtree(tmpdirname)
tmpdirname = None
return gr.File(visible=False)