|
import asyncio |
|
import shutil |
|
import tempfile |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
import plotly.express as px |
|
|
|
import src.constants as constants |
|
from src.hub import glob, load_json_file |
|
|
|
|
|
def load_result_paths_per_model(): |
|
return sort_result_paths_per_model(fetch_result_paths()) |
|
|
|
|
|
def fetch_result_paths(): |
|
path = f"{constants.RESULTS_DATASET_ID}/**/**/*.json" |
|
return glob(path) |
|
|
|
|
|
def sort_result_paths_per_model(paths): |
|
from collections import defaultdict |
|
|
|
d = defaultdict(list) |
|
for path in paths: |
|
model_id, _ = path[len(constants.RESULTS_DATASET_ID) + 1 :].rsplit("/", 1) |
|
d[model_id].append(path) |
|
return {model_id: sorted(paths) for model_id, paths in d.items()} |
|
|
|
|
|
async def load_results_dataframe(model_id, result_paths_per_model=None): |
|
if not model_id or not result_paths_per_model: |
|
return |
|
result_paths = result_paths_per_model[model_id] |
|
results = await asyncio.gather(*[load_json_file(path) for path in result_paths]) |
|
results = [result for result in results if result] |
|
if not results: |
|
return |
|
data = {"results": {}, "configs": {}} |
|
for result in results: |
|
data["results"].update(result["results"]) |
|
data["configs"].update(result["configs"]) |
|
model_name = result.get("model_name", "Model") |
|
df = pd.json_normalize([data]) |
|
|
|
return df.set_index(pd.Index([model_name])) |
|
|
|
|
|
async def load_results(result_paths_per_model, *model_ids_lists): |
|
dfs = await asyncio.gather( |
|
*[ |
|
load_results_dataframe(model_id, result_paths_per_model) |
|
for model_ids in model_ids_lists |
|
if model_ids |
|
for model_id in model_ids |
|
] |
|
) |
|
dfs = [df for df in dfs if df is not None] |
|
if dfs: |
|
return pd.concat(dfs), None |
|
else: |
|
return None, None |
|
|
|
|
|
def display_results(df, task, hide_std_errors, show_only_differences): |
|
if df is None: |
|
return None, None |
|
df = df.T.rename_axis(columns=None) |
|
return ( |
|
display_tab("results", df, task, hide_std_errors=hide_std_errors), |
|
display_tab("configs", df, task, show_only_differences=show_only_differences), |
|
) |
|
|
|
|
|
def display_tab(tab, df, task, hide_std_errors=True, show_only_differences=False): |
|
if show_only_differences: |
|
any_difference = df.ne(df.iloc[:, 0], axis=0).any(axis=1) |
|
df = df.style.format(escape="html", na_rep="") |
|
|
|
df.hide( |
|
[ |
|
row |
|
for row in df.index |
|
if ( |
|
not row.startswith(f"{tab}.") |
|
or row.startswith(f"{tab}.leaderboard.") |
|
or row.endswith(".alias") |
|
or ( |
|
not row.startswith(f"{tab}.{task}") |
|
if task != "All" |
|
else row.startswith(f"{tab}.leaderboard_arc_challenge") |
|
) |
|
|
|
or (row.startswith(f"{tab}.leaderboard_math") and row.endswith("fewshot_config.samples")) |
|
|
|
or (hide_std_errors and row.endswith("_stderr,none")) |
|
|
|
or (show_only_differences and not any_difference[row]) |
|
) |
|
], |
|
axis="index", |
|
) |
|
|
|
idx = pd.IndexSlice |
|
colored_rows = idx[ |
|
[ |
|
row |
|
for row in df.index |
|
if row.endswith("acc,none") or row.endswith("acc_norm,none") or row.endswith("exact_match,none") |
|
] |
|
] |
|
subset = idx[colored_rows, idx[:]] |
|
df.background_gradient(cmap="PiYG", vmin=0, vmax=1, subset=subset, axis=None) |
|
|
|
start = len(f"{tab}.leaderboard_") if task == "All" else len(f"{tab}.{task} ") |
|
df.format_index(lambda idx: idx[start:].removesuffix(",none"), axis="index") |
|
|
|
df.set_table_styles( |
|
[ |
|
{ |
|
"selector": "td", |
|
"props": [("overflow-wrap", "break-word"), ("max-width", "1px")], |
|
}, |
|
{ |
|
"selector": ".col_heading", |
|
"props": [("width", f"{100 / len(df.columns)}%")], |
|
}, |
|
] |
|
) |
|
return df.to_html() |
|
|
|
|
|
def update_tasks_component(): |
|
return ( |
|
gr.Radio( |
|
["All"] + list(constants.TASKS.values()), |
|
label="Tasks", |
|
info="Evaluation tasks to be displayed", |
|
value="All", |
|
visible=True, |
|
), |
|
) * 2 |
|
|
|
|
|
def clear_results(): |
|
|
|
return ( |
|
gr.Dropdown(value=[]), |
|
None, |
|
*(gr.Button("Load", interactive=False),) * 2, |
|
*( |
|
gr.Radio( |
|
["All"] + list(constants.TASKS.values()), |
|
label="Tasks", |
|
info="Evaluation tasks to be displayed", |
|
value="All", |
|
visible=False, |
|
), |
|
) |
|
* 2, |
|
) |
|
|
|
|
|
def display_loading_message_for_results(): |
|
return ("<h3 style='text-align: center;'>Loading...</h3>",) * 2 |
|
|
|
|
|
def plot_results(df, task): |
|
if df is not None: |
|
df = df[ |
|
[ |
|
col |
|
for col in df.columns |
|
if col.startswith("results.") |
|
and (col.endswith("acc,none") or col.endswith("acc_norm,none") or col.endswith("exact_match,none")) |
|
] |
|
] |
|
tasks = {key: tupl[0] for key, tupl in constants.TASKS.items()} |
|
tasks["leaderboard_math"] = tasks["leaderboard_math_hard"] |
|
subtasks = {tupl[1]: tupl[0] for tupl in constants.SUBTASKS.get(task, [])} |
|
if task == "All": |
|
df = df[[col for col in df.columns if col.split(".")[1] in tasks]] |
|
|
|
ifeval_mean = df[ |
|
[ |
|
"results.leaderboard_ifeval.inst_level_strict_acc,none", |
|
"results.leaderboard_ifeval.prompt_level_strict_acc,none", |
|
] |
|
].mean(axis=1) |
|
df = df.drop(columns=[col for col in df.columns if col.split(".")[1] == "leaderboard_ifeval"]) |
|
loc = df.columns.get_loc("results.leaderboard_math_hard.exact_match,none") |
|
df.insert(loc - 1, "results.leaderboard_ifeval", ifeval_mean) |
|
|
|
df = df.rename(columns=lambda col: tasks[col.split(".")[1]]) |
|
else: |
|
df = df[[col for col in df.columns if col.startswith(f"results.{task}")]] |
|
|
|
if task == "leaderboard_ifeval": |
|
df = df.rename(columns=lambda col: col.split(".")[2].removesuffix(",none")) |
|
else: |
|
df = df.rename(columns=lambda col: tasks.get(col.split(".")[1], subtasks.get(col.split(".")[1]))) |
|
fig_1 = px.bar( |
|
df.T.rename_axis(columns="Model"), |
|
barmode="group", |
|
labels={"index": "Benchmark" if task == "All" else "Subtask", "value": "Score"}, |
|
color_discrete_sequence=px.colors.qualitative.Safe, |
|
) |
|
fig_1.update_yaxes(range=[0, 1]) |
|
fig_2 = px.line_polar( |
|
df.melt(ignore_index=False, var_name="Benchmark", value_name="Score").reset_index(names="Model"), |
|
r="Score", |
|
theta="Benchmark", |
|
color="Model", |
|
line_close=True, |
|
range_r=[0, 1], |
|
color_discrete_sequence=px.colors.qualitative.Safe, |
|
) |
|
|
|
fig_2.update_layout( |
|
title_text="", |
|
title_font_size=1, |
|
) |
|
return fig_1, fig_2 |
|
else: |
|
return None, None |
|
|
|
|
|
tmpdirname = None |
|
|
|
|
|
def download_results(results): |
|
global tmpdirname |
|
if results: |
|
if tmpdirname: |
|
shutil.rmtree(tmpdirname) |
|
tmpdirname = tempfile.mkdtemp() |
|
path = f"{tmpdirname}/results.html" |
|
with open(path, "w") as f: |
|
f.write(results) |
|
return gr.File(path, visible=True) |
|
|
|
|
|
def clear_results_file(): |
|
global tmpdirname |
|
if tmpdirname: |
|
shutil.rmtree(tmpdirname) |
|
tmpdirname = None |
|
return gr.File(visible=False) |
|
|