Spaces:
Sleeping
Sleeping
ooferdoodles
commited on
Commit
•
3f8e838
1
Parent(s):
3470f9f
initial commit
Browse files- app.py +44 -0
- changechip.py +738 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
from changechip import *
|
5 |
+
|
6 |
+
app_port = os.getenv("APP_PORT", "7860")
|
7 |
+
|
8 |
+
|
9 |
+
def process(input_image, reference_image, resize_factor, output_alpha):
|
10 |
+
return pipeline(
|
11 |
+
(input_image, reference_image),
|
12 |
+
resize_factor=resize_factor,
|
13 |
+
output_alpha=output_alpha,
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
with gr.Blocks() as demo:
|
18 |
+
gr.Markdown("# ChangeChip")
|
19 |
+
gr.Markdown(
|
20 |
+
"""
|
21 |
+
Welcome to ChangeChip! This tool allows you to detect defects on printed circuit boards (PCBs) by comparing an input image with a reference "golden sample" image.
|
22 |
+
Simply upload your images, adjust the settings if needed, and click "Run" to highlight any discrepancies.
|
23 |
+
"""
|
24 |
+
)
|
25 |
+
with gr.Row():
|
26 |
+
with gr.Column(scale=1):
|
27 |
+
input_image = gr.Image(label="Input Image")
|
28 |
+
reference_image = gr.Image(label="Reference Image")
|
29 |
+
with gr.Accordion(label="Other Options", open=False):
|
30 |
+
resize_factor = gr.Slider(0.1, 1, 0.5, step=0.1, label="Resize Factor")
|
31 |
+
output_alpha = gr.Slider(0, 255, 50, step=1, label="Output Alpha")
|
32 |
+
|
33 |
+
with gr.Column(scale=2):
|
34 |
+
output_image = gr.Image(label="Output Image", scale=9)
|
35 |
+
btn = gr.Button("Run", scale=1)
|
36 |
+
|
37 |
+
btn.click(
|
38 |
+
fn=process,
|
39 |
+
inputs=[input_image, reference_image, resize_factor, output_alpha],
|
40 |
+
outputs=output_image,
|
41 |
+
)
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
demo.launch()
|
changechip.py
ADDED
@@ -0,0 +1,738 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from skimage.exposure import match_histograms
|
6 |
+
from sklearn.cluster import KMeans, DBSCAN
|
7 |
+
from sklearn.decomposition import PCA
|
8 |
+
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import matplotlib.colors as mcolors
|
11 |
+
import seaborn as sns
|
12 |
+
|
13 |
+
import time
|
14 |
+
|
15 |
+
|
16 |
+
def resize_images(images, resize_factor=1.0):
|
17 |
+
"""
|
18 |
+
Resizes the input and reference images based on the average dimensions of the two images and a resize factor.
|
19 |
+
|
20 |
+
Parameters:
|
21 |
+
images (tuple): A tuple containing two images (input_image, reference_image). Both images should be numpy arrays.
|
22 |
+
resize_factor (float): A factor by which to resize the images. Default is 1.0, which means the images will be resized to the average dimensions of the two images.
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
tuple: A tuple containing the resized input and reference images.
|
26 |
+
|
27 |
+
Example:
|
28 |
+
>>> input_image = cv2.imread('input.jpg')
|
29 |
+
>>> reference_image = cv2.imread('reference.jpg')
|
30 |
+
>>> resized_images = resize_images((input_image, reference_image), resize_factor=0.5)
|
31 |
+
|
32 |
+
"""
|
33 |
+
input_image, reference_image = images
|
34 |
+
average_width = (input_image.shape[1] + reference_image.shape[1]) * 0.5
|
35 |
+
average_height = (input_image.shape[0] + reference_image.shape[0]) * 0.5
|
36 |
+
new_shape = (
|
37 |
+
int(resize_factor * average_width),
|
38 |
+
int(resize_factor * average_height),
|
39 |
+
)
|
40 |
+
|
41 |
+
input_image = cv2.resize(input_image, new_shape, interpolation=cv2.INTER_AREA)
|
42 |
+
reference_image = cv2.resize(
|
43 |
+
reference_image, new_shape, interpolation=cv2.INTER_AREA
|
44 |
+
)
|
45 |
+
|
46 |
+
return input_image, reference_image
|
47 |
+
|
48 |
+
|
49 |
+
def homography(images, debug=False, output_directory=None):
|
50 |
+
"""
|
51 |
+
Apply homography transformation to align two images.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
images (tuple): A tuple containing two images, where the first image is the input image and the second image is the reference image.
|
55 |
+
debug (bool, optional): If True, debug images will be generated. Defaults to False.
|
56 |
+
output_directory (str, optional): The directory to save the debug images. Defaults to None.
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
tuple: A tuple containing the aligned input image and the reference image.
|
60 |
+
"""
|
61 |
+
input_image, reference_image = images
|
62 |
+
# Initiate SIFT detector
|
63 |
+
sift = cv2.SIFT_create()
|
64 |
+
|
65 |
+
# find the keypoints and descriptors with SIFT
|
66 |
+
input_keypoints, input_descriptors = sift.detectAndCompute(input_image, None)
|
67 |
+
reference_keypoints, reference_descriptors = sift.detectAndCompute(
|
68 |
+
reference_image, None
|
69 |
+
)
|
70 |
+
# BFMatcher with default params
|
71 |
+
bf = cv2.BFMatcher()
|
72 |
+
matches = bf.knnMatch(reference_descriptors, input_descriptors, k=2)
|
73 |
+
|
74 |
+
# Apply ratio test
|
75 |
+
good_draw = []
|
76 |
+
good_without_list = []
|
77 |
+
for m, n in matches:
|
78 |
+
if m.distance < 0.8 * n.distance: # 0.8 = a value suggested by David G. Lowe.
|
79 |
+
good_draw.append([m])
|
80 |
+
good_without_list.append(m)
|
81 |
+
|
82 |
+
# cv.drawMatchesKnn expects list of lists as matches.
|
83 |
+
if debug:
|
84 |
+
assert output_directory is not None, "Output directory must be provided"
|
85 |
+
os.makedirs(output_directory, exist_ok=True)
|
86 |
+
cv2.imwrite(
|
87 |
+
os.path.join(output_directory, "matching.png"),
|
88 |
+
cv2.drawMatchesKnn(
|
89 |
+
reference_image,
|
90 |
+
reference_keypoints,
|
91 |
+
input_image,
|
92 |
+
input_keypoints,
|
93 |
+
good_draw,
|
94 |
+
None,
|
95 |
+
flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS,
|
96 |
+
),
|
97 |
+
)
|
98 |
+
|
99 |
+
# Extract location of good matches
|
100 |
+
reference_points = np.zeros((len(good_without_list), 2), dtype=np.float32)
|
101 |
+
input_points = reference_points.copy()
|
102 |
+
|
103 |
+
for i, match in enumerate(good_without_list):
|
104 |
+
input_points[i, :] = reference_keypoints[match.queryIdx].pt
|
105 |
+
reference_points[i, :] = input_keypoints[match.trainIdx].pt
|
106 |
+
|
107 |
+
# Find homography
|
108 |
+
h, _ = cv2.findHomography(input_points, reference_points, cv2.RANSAC)
|
109 |
+
|
110 |
+
# Use homography
|
111 |
+
height, width = reference_image.shape[:2]
|
112 |
+
white_reference_image = 255 - np.zeros(shape=reference_image.shape, dtype=np.uint8)
|
113 |
+
white_reg = cv2.warpPerspective(white_reference_image, h, (width, height))
|
114 |
+
blank_pixels_mask = np.any(white_reg != [255, 255, 255], axis=-1)
|
115 |
+
reference_image_registered = cv2.warpPerspective(
|
116 |
+
reference_image, h, (width, height)
|
117 |
+
)
|
118 |
+
if debug:
|
119 |
+
assert output_directory is not None, "Output directory must be provided"
|
120 |
+
cv2.imwrite(
|
121 |
+
os.path.join(output_directory, "aligned.png"), reference_image_registered
|
122 |
+
)
|
123 |
+
|
124 |
+
input_image[blank_pixels_mask] = [0, 0, 0]
|
125 |
+
reference_image_registered[blank_pixels_mask] = [0, 0, 0]
|
126 |
+
|
127 |
+
return input_image, reference_image_registered
|
128 |
+
|
129 |
+
|
130 |
+
def histogram_matching(images, debug=False, output_directory=None):
|
131 |
+
"""
|
132 |
+
Perform histogram matching between an input image and a reference image.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
images (tuple): A tuple containing the input image and the reference image.
|
136 |
+
debug (bool, optional): If True, save the histogram-matched image to the output directory. Defaults to False.
|
137 |
+
output_directory (str, optional): The directory to save the histogram-matched image. Defaults to None.
|
138 |
+
|
139 |
+
Returns:
|
140 |
+
tuple: A tuple containing the input image and the histogram-matched reference image.
|
141 |
+
"""
|
142 |
+
|
143 |
+
input_image, reference_image = images
|
144 |
+
|
145 |
+
reference_image_matched = match_histograms(
|
146 |
+
reference_image, input_image, channel_axis=-1
|
147 |
+
)
|
148 |
+
if debug:
|
149 |
+
assert output_directory is not None, "Output directory must be provided"
|
150 |
+
cv2.imwrite(
|
151 |
+
os.path.join(output_directory, "histogram_matched.jpg"),
|
152 |
+
reference_image_matched,
|
153 |
+
)
|
154 |
+
reference_image_matched = np.asarray(reference_image_matched, dtype=np.uint8)
|
155 |
+
return input_image, reference_image_matched
|
156 |
+
|
157 |
+
|
158 |
+
def preprocess_images(images, resize_factor=1.0, debug=False, output_directory=None):
|
159 |
+
"""
|
160 |
+
Preprocesses a list of images by performing the following steps:
|
161 |
+
1. Resizes the images based on the given resize factor.
|
162 |
+
2. Applies homography to align the resized images.
|
163 |
+
3. Performs histogram matching on the aligned images.
|
164 |
+
|
165 |
+
Args:
|
166 |
+
images (tuple): A tuple containing the input image and the reference image.
|
167 |
+
resize_factor (float, optional): The factor by which to resize the images. Defaults to 1.0.
|
168 |
+
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
169 |
+
output_directory (str, optional): The directory to save the output images. Defaults to None.
|
170 |
+
|
171 |
+
Returns:
|
172 |
+
tuple: The preprocessed images.
|
173 |
+
|
174 |
+
Example:
|
175 |
+
>>> images = (input_image, reference_image)
|
176 |
+
>>> preprocess_images(images, resize_factor=0.5, debug=True, output_directory='output/')
|
177 |
+
"""
|
178 |
+
start_time = time.time()
|
179 |
+
resized_images = resize_images(images, resize_factor)
|
180 |
+
aligned_images = homography(
|
181 |
+
resized_images, debug=debug, output_directory=output_directory
|
182 |
+
)
|
183 |
+
matched_images = histogram_matching(
|
184 |
+
aligned_images, debug=debug, output_directory=output_directory
|
185 |
+
)
|
186 |
+
print("--- Preprocessing time - %s seconds ---" % (time.time() - start_time))
|
187 |
+
return matched_images
|
188 |
+
|
189 |
+
|
190 |
+
# The returned vector_set goes later to the PCA algorithm which derives the EVS (Eigen Vector Space).
|
191 |
+
# Therefore, there is a mean normalization of the data
|
192 |
+
# jump_size is for iterating non-overlapping windows. This parameter should be eqaul to the window_size of the system
|
193 |
+
def find_vector_set(descriptors, jump_size, shape):
|
194 |
+
"""
|
195 |
+
Find the vector set from the given descriptors.
|
196 |
+
|
197 |
+
Args:
|
198 |
+
descriptors (numpy.ndarray): The input descriptors.
|
199 |
+
jump_size (int): The jump size for sampling the descriptors.
|
200 |
+
shape (tuple): The shape of the descriptors.
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
tuple: A tuple containing the vector set and the mean vector.
|
204 |
+
"""
|
205 |
+
size_0, size_1 = shape
|
206 |
+
descriptors_2d = descriptors.reshape((size_0, size_1, descriptors.shape[1]))
|
207 |
+
vector_set = descriptors_2d[::jump_size, ::jump_size]
|
208 |
+
vector_set = vector_set.reshape(
|
209 |
+
(vector_set.shape[0] * vector_set.shape[1], vector_set.shape[2])
|
210 |
+
)
|
211 |
+
mean_vec = np.mean(vector_set, axis=0)
|
212 |
+
vector_set = vector_set - mean_vec # mean normalization
|
213 |
+
return vector_set, mean_vec
|
214 |
+
|
215 |
+
|
216 |
+
# returns the FSV (Feature Vector Space) which then goes directly to clustering (with Kmeans)
|
217 |
+
# Multiply the data with the EVS to get the entire data in the PCA target space
|
218 |
+
def find_FVS(descriptors, EVS, mean_vec):
|
219 |
+
"""
|
220 |
+
Calculate the feature vector space (FVS) by performing dot product of descriptors and EVS,
|
221 |
+
and subtracting the mean vector from the result.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
descriptors (numpy.ndarray): Array of descriptors.
|
225 |
+
EVS (numpy.ndarray): Eigenvalue matrix.
|
226 |
+
mean_vec (numpy.ndarray): Mean vector.
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
numpy.ndarray: The calculated feature vector space (FVS).
|
230 |
+
|
231 |
+
"""
|
232 |
+
FVS = np.dot(descriptors, EVS)
|
233 |
+
FVS = FVS - mean_vec
|
234 |
+
# print("\nfeature vector space size", FVS.shape)
|
235 |
+
return FVS
|
236 |
+
|
237 |
+
|
238 |
+
# assumes descriptors is already flattened
|
239 |
+
# returns descriptors after moving them into the PCA vector space
|
240 |
+
def descriptors_to_pca(descriptors, pca_target_dim, window_size, shape):
|
241 |
+
"""
|
242 |
+
Applies Principal Component Analysis (PCA) to a set of descriptors.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
descriptors (list): List of descriptors.
|
246 |
+
pca_target_dim (int): Target dimensionality for PCA.
|
247 |
+
window_size (int): Size of the sliding window.
|
248 |
+
shape (tuple): Shape of the descriptors.
|
249 |
+
|
250 |
+
Returns:
|
251 |
+
list: Feature vector set after applying PCA.
|
252 |
+
"""
|
253 |
+
vector_set, mean_vec = find_vector_set(descriptors, window_size, shape)
|
254 |
+
pca = PCA(pca_target_dim)
|
255 |
+
pca.fit(vector_set)
|
256 |
+
EVS = pca.components_
|
257 |
+
mean_vec = np.dot(mean_vec, EVS.transpose())
|
258 |
+
FVS = find_FVS(descriptors, EVS.transpose(), mean_vec)
|
259 |
+
return FVS
|
260 |
+
|
261 |
+
|
262 |
+
def get_descriptors(
|
263 |
+
images,
|
264 |
+
window_size,
|
265 |
+
pca_dim_gray,
|
266 |
+
pca_dim_rgb,
|
267 |
+
debug=False,
|
268 |
+
output_directory=None,
|
269 |
+
):
|
270 |
+
"""
|
271 |
+
Compute descriptors for input images using sliding window technique and PCA.
|
272 |
+
|
273 |
+
Args:
|
274 |
+
images (tuple): A tuple containing the input image and reference image.
|
275 |
+
window_size (int): The size of the sliding window.
|
276 |
+
pca_dim_gray (int): The number of dimensions to keep for grayscale PCA.
|
277 |
+
pca_dim_rgb (int): The number of dimensions to keep for RGB PCA.
|
278 |
+
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
279 |
+
output_directory (str, optional): The directory to save debug images. Required if debug is True.
|
280 |
+
|
281 |
+
Returns:
|
282 |
+
numpy.ndarray: The computed descriptors.
|
283 |
+
|
284 |
+
Raises:
|
285 |
+
AssertionError: If debug is True but output_directory is not provided.
|
286 |
+
"""
|
287 |
+
input_image, reference_image = images
|
288 |
+
|
289 |
+
diff_image_gray = cv2.cvtColor(
|
290 |
+
cv2.absdiff(input_image, reference_image), cv2.COLOR_BGR2GRAY
|
291 |
+
)
|
292 |
+
|
293 |
+
if debug:
|
294 |
+
assert output_directory is not None, "Output directory must be provided"
|
295 |
+
cv2.imwrite(os.path.join(output_directory, "diff.jpg"), diff_image_gray)
|
296 |
+
|
297 |
+
# Padding for windowing
|
298 |
+
padded_diff_gray = np.pad(
|
299 |
+
diff_image_gray,
|
300 |
+
((window_size // 2, window_size // 2), (window_size // 2, window_size // 2)),
|
301 |
+
mode="constant",
|
302 |
+
)
|
303 |
+
|
304 |
+
# Sliding window for gray
|
305 |
+
shape = (input_image.shape[0], input_image.shape[1], window_size, window_size)
|
306 |
+
strides = padded_diff_gray.strides * 2
|
307 |
+
windows_gray = np.lib.stride_tricks.as_strided(
|
308 |
+
padded_diff_gray, shape=shape, strides=strides
|
309 |
+
)
|
310 |
+
descriptors_gray_diff = windows_gray.reshape(-1, window_size * window_size)
|
311 |
+
|
312 |
+
# 3-channel RGB differences
|
313 |
+
diff_image_r = cv2.absdiff(input_image[:, :, 0], reference_image[:, :, 0])
|
314 |
+
diff_image_g = cv2.absdiff(input_image[:, :, 1], reference_image[:, :, 1])
|
315 |
+
diff_image_b = cv2.absdiff(input_image[:, :, 2], reference_image[:, :, 2])
|
316 |
+
|
317 |
+
if debug:
|
318 |
+
assert output_directory is not None, "Output directory must be provided"
|
319 |
+
cv2.imwrite(
|
320 |
+
os.path.join(output_directory, "final_diff.jpg"),
|
321 |
+
cv2.absdiff(input_image, reference_image),
|
322 |
+
)
|
323 |
+
cv2.imwrite(os.path.join(output_directory, "final_diff_r.jpg"), diff_image_r)
|
324 |
+
cv2.imwrite(os.path.join(output_directory, "final_diff_g.jpg"), diff_image_g)
|
325 |
+
cv2.imwrite(os.path.join(output_directory, "final_diff_b.jpg"), diff_image_b)
|
326 |
+
|
327 |
+
# Padding for windowing RGB
|
328 |
+
padded_diff_r = np.pad(
|
329 |
+
diff_image_r,
|
330 |
+
((window_size // 2, window_size // 2), (window_size // 2, window_size // 2)),
|
331 |
+
mode="constant",
|
332 |
+
)
|
333 |
+
padded_diff_g = np.pad(
|
334 |
+
diff_image_g,
|
335 |
+
((window_size // 2, window_size // 2), (window_size // 2, window_size // 2)),
|
336 |
+
mode="constant",
|
337 |
+
)
|
338 |
+
padded_diff_b = np.pad(
|
339 |
+
diff_image_b,
|
340 |
+
((window_size // 2, window_size // 2), (window_size // 2, window_size // 2)),
|
341 |
+
mode="constant",
|
342 |
+
)
|
343 |
+
|
344 |
+
# Sliding window for RGB
|
345 |
+
windows_r = np.lib.stride_tricks.as_strided(
|
346 |
+
padded_diff_r, shape=shape, strides=strides
|
347 |
+
)
|
348 |
+
windows_g = np.lib.stride_tricks.as_strided(
|
349 |
+
padded_diff_g, shape=shape, strides=strides
|
350 |
+
)
|
351 |
+
windows_b = np.lib.stride_tricks.as_strided(
|
352 |
+
padded_diff_b, shape=shape, strides=strides
|
353 |
+
)
|
354 |
+
|
355 |
+
descriptors_rgb_diff = np.concatenate(
|
356 |
+
[
|
357 |
+
windows_r.reshape(-1, window_size * window_size),
|
358 |
+
windows_g.reshape(-1, window_size * window_size),
|
359 |
+
windows_b.reshape(-1, window_size * window_size),
|
360 |
+
],
|
361 |
+
axis=1,
|
362 |
+
)
|
363 |
+
|
364 |
+
# PCA on descriptors
|
365 |
+
shape = input_image.shape[::-1][1:] # shape = (height, width)
|
366 |
+
descriptors_gray_diff = descriptors_to_pca(
|
367 |
+
descriptors_gray_diff, pca_dim_gray, window_size, shape
|
368 |
+
)
|
369 |
+
descriptors_rgb_diff = descriptors_to_pca(
|
370 |
+
descriptors_rgb_diff, pca_dim_rgb, window_size, shape
|
371 |
+
)
|
372 |
+
|
373 |
+
# Concatenate grayscale and RGB PCA results
|
374 |
+
descriptors = np.concatenate((descriptors_gray_diff, descriptors_rgb_diff), axis=-1)
|
375 |
+
|
376 |
+
return descriptors
|
377 |
+
|
378 |
+
|
379 |
+
def k_means_clustering(FVS, components, image_shape):
|
380 |
+
"""
|
381 |
+
Perform K-means clustering on the given feature vectors.
|
382 |
+
|
383 |
+
Args:
|
384 |
+
FVS (array-like): The feature vectors to be clustered.
|
385 |
+
components (int): The number of clusters (components) to create.
|
386 |
+
image_shape (tuple): The size of the images used to reshape the change map.
|
387 |
+
|
388 |
+
Returns:
|
389 |
+
array-like: The change map obtained from the K-means clustering.
|
390 |
+
|
391 |
+
"""
|
392 |
+
kmeans = KMeans(components, verbose=0)
|
393 |
+
kmeans.fit(FVS)
|
394 |
+
flatten_change_map = kmeans.predict(FVS)
|
395 |
+
change_map = np.reshape(flatten_change_map, (image_shape[0], image_shape[1]))
|
396 |
+
return change_map
|
397 |
+
|
398 |
+
|
399 |
+
def clustering_to_mse_values(change_map, input_image, reference_image, n):
|
400 |
+
"""
|
401 |
+
Compute the normalized mean squared error (MSE) values for each cluster in a change map.
|
402 |
+
|
403 |
+
Args:
|
404 |
+
change_map (numpy.ndarray): Array representing the cluster labels for each pixel in the change map.
|
405 |
+
input_image (numpy.ndarray): Array representing the input image.
|
406 |
+
reference_image (numpy.ndarray): Array representing the reference image.
|
407 |
+
n (int): Number of clusters.
|
408 |
+
|
409 |
+
Returns:
|
410 |
+
list: Normalized MSE values for each cluster.
|
411 |
+
|
412 |
+
"""
|
413 |
+
|
414 |
+
# Ensure the images are in integer format for calculations
|
415 |
+
input_image = input_image.astype(int)
|
416 |
+
reference_image = reference_image.astype(int)
|
417 |
+
|
418 |
+
# Compute the squared differences
|
419 |
+
squared_diff = np.mean((input_image - reference_image) ** 2, axis=-1)
|
420 |
+
|
421 |
+
# Initialize arrays to store MSE and size for each cluster
|
422 |
+
mse = np.zeros(n, dtype=float)
|
423 |
+
size = np.zeros(n, dtype=int)
|
424 |
+
|
425 |
+
# Compute the MSE and size for each cluster
|
426 |
+
for k in range(n):
|
427 |
+
mask = change_map == k
|
428 |
+
size[k] = np.sum(mask)
|
429 |
+
if size[k] > 0:
|
430 |
+
mse[k] = np.sum(squared_diff[mask])
|
431 |
+
|
432 |
+
# Normalize MSE values by the number of pixels and the maximum possible MSE (255^2)
|
433 |
+
normalized_mse = (mse / size) / (255**2)
|
434 |
+
|
435 |
+
return normalized_mse.tolist()
|
436 |
+
|
437 |
+
|
438 |
+
def compute_change_map(
|
439 |
+
images,
|
440 |
+
window_size,
|
441 |
+
clusters,
|
442 |
+
pca_dim_gray,
|
443 |
+
pca_dim_rgb,
|
444 |
+
debug=False,
|
445 |
+
output_directory=None,
|
446 |
+
):
|
447 |
+
"""
|
448 |
+
Compute the change map and mean squared error (MSE) array for a pair of input and reference images.
|
449 |
+
|
450 |
+
Args:
|
451 |
+
images (tuple): A tuple containing the input and reference images.
|
452 |
+
window_size (int): The size of the sliding window for feature extraction.
|
453 |
+
clusters (int): The number of clusters for k-means clustering.
|
454 |
+
pca_dim_gray (int): The number of dimensions to reduce to for grayscale images.
|
455 |
+
pca_dim_rgb (int): The number of dimensions to reduce to for RGB images.
|
456 |
+
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
457 |
+
output_directory (str, optional): The directory to save the output files. Required if debug mode is enabled.
|
458 |
+
|
459 |
+
Returns:
|
460 |
+
tuple: A tuple containing the change map and MSE array.
|
461 |
+
|
462 |
+
Raises:
|
463 |
+
AssertionError: If debug mode is enabled but output_directory is not provided.
|
464 |
+
|
465 |
+
"""
|
466 |
+
input_image, reference_image = images
|
467 |
+
descriptors = get_descriptors(
|
468 |
+
images,
|
469 |
+
window_size,
|
470 |
+
pca_dim_gray,
|
471 |
+
pca_dim_rgb,
|
472 |
+
debug=debug,
|
473 |
+
output_directory=output_directory,
|
474 |
+
)
|
475 |
+
# Now we are ready for clustering!
|
476 |
+
change_map = k_means_clustering(descriptors, clusters, input_image.shape)
|
477 |
+
mse_array = clustering_to_mse_values(
|
478 |
+
change_map, input_image, reference_image, clusters
|
479 |
+
)
|
480 |
+
|
481 |
+
colormap = mcolors.LinearSegmentedColormap.from_list(
|
482 |
+
"custom_jet", plt.cm.jet(np.linspace(0, 1, clusters))
|
483 |
+
)
|
484 |
+
colors_array = (
|
485 |
+
colormap(np.linspace(0, 1, clusters))[:, :3] * 255
|
486 |
+
) # Convert to RGB values
|
487 |
+
|
488 |
+
palette = sns.color_palette("Paired", clusters)
|
489 |
+
palette = np.array(palette) * 255 # Convert to RGB values
|
490 |
+
|
491 |
+
# Optimized loop
|
492 |
+
change_map_flat = change_map.ravel()
|
493 |
+
colored_change_map_flat = (
|
494 |
+
colors_array[change_map_flat]
|
495 |
+
.reshape(change_map.shape[0], change_map.shape[1], 3)
|
496 |
+
.astype(np.uint8)
|
497 |
+
)
|
498 |
+
palette_colored_change_map_flat = (
|
499 |
+
palette[change_map_flat]
|
500 |
+
.reshape(change_map.shape[0], change_map.shape[1], 3)
|
501 |
+
.astype(np.uint8)
|
502 |
+
)
|
503 |
+
|
504 |
+
if debug:
|
505 |
+
assert output_directory is not None, "Output directory must be provided"
|
506 |
+
cv2.imwrite(
|
507 |
+
os.path.join(
|
508 |
+
output_directory,
|
509 |
+
f"window_size_{window_size}_pca_dim_gray{pca_dim_gray}_pca_dim_rgb{pca_dim_rgb}_clusters_{clusters}.jpg",
|
510 |
+
),
|
511 |
+
colored_change_map_flat,
|
512 |
+
)
|
513 |
+
cv2.imwrite(
|
514 |
+
os.path.join(
|
515 |
+
output_directory,
|
516 |
+
f"PALETTE_window_size_{window_size}_pca_dim_gray{pca_dim_gray}_pca_dim_rgb{pca_dim_rgb}_clusters_{clusters}.jpg",
|
517 |
+
),
|
518 |
+
palette_colored_change_map_flat,
|
519 |
+
)
|
520 |
+
|
521 |
+
if debug:
|
522 |
+
assert output_directory is not None, "Output directory must be provided"
|
523 |
+
# Saving Output for later evaluation
|
524 |
+
np.savetxt(
|
525 |
+
os.path.join(output_directory, "clustering_data.csv"),
|
526 |
+
change_map,
|
527 |
+
delimiter=",",
|
528 |
+
)
|
529 |
+
return change_map, mse_array
|
530 |
+
|
531 |
+
|
532 |
+
# selects the classes to be shown to the user as 'changes'.
|
533 |
+
# this selection is done by an MSE heuristic using DBSCAN clustering, to seperate the highest mse-valued classes from the others.
|
534 |
+
# the eps density parameter of DBSCAN might differ from system to system
|
535 |
+
def find_group_of_accepted_classes_DBSCAN(
|
536 |
+
MSE_array, debug=False, output_directory=None
|
537 |
+
):
|
538 |
+
"""
|
539 |
+
Finds the group of accepted classes using the DBSCAN algorithm.
|
540 |
+
|
541 |
+
Parameters:
|
542 |
+
- MSE_array (list): A list of mean squared error values.
|
543 |
+
- debug (bool): Flag indicating whether to enable debug mode or not. Default is False.
|
544 |
+
- output_directory (str): The directory where the output files will be saved. Default is None.
|
545 |
+
|
546 |
+
Returns:
|
547 |
+
- accepted_classes (list): A list of indices of the accepted classes.
|
548 |
+
"""
|
549 |
+
|
550 |
+
clustering = DBSCAN(eps=0.02, min_samples=1).fit(np.array(MSE_array).reshape(-1, 1))
|
551 |
+
number_of_clusters = len(set(clustering.labels_))
|
552 |
+
if number_of_clusters == 1:
|
553 |
+
print("No significant changes are detected.")
|
554 |
+
exit(0)
|
555 |
+
|
556 |
+
# print(clustering.labels_)
|
557 |
+
classes = [[] for _ in range(number_of_clusters)]
|
558 |
+
centers = np.zeros(number_of_clusters)
|
559 |
+
|
560 |
+
np.add.at(centers, clustering.labels_, MSE_array)
|
561 |
+
|
562 |
+
for i in range(len(MSE_array)):
|
563 |
+
classes[clustering.labels_[i]].append(i)
|
564 |
+
|
565 |
+
centers /= np.array([len(c) for c in classes])
|
566 |
+
|
567 |
+
min_class = np.argmin(centers)
|
568 |
+
accepted_classes = np.where(clustering.labels_ != min_class)[0]
|
569 |
+
|
570 |
+
if debug:
|
571 |
+
assert output_directory is not None, "Output directory must be provided"
|
572 |
+
plt.figure()
|
573 |
+
plt.xlabel("Index")
|
574 |
+
plt.ylabel("MSE")
|
575 |
+
plt.scatter(range(len(MSE_array)), MSE_array, c="red")
|
576 |
+
plt.scatter(
|
577 |
+
accepted_classes[:],
|
578 |
+
np.array(MSE_array)[np.array(accepted_classes)],
|
579 |
+
c="blue",
|
580 |
+
)
|
581 |
+
plt.title("K Mean Classification")
|
582 |
+
|
583 |
+
plt.savefig(os.path.join(output_directory, "mse.png"))
|
584 |
+
|
585 |
+
# save output for later evaluation
|
586 |
+
np.savetxt(
|
587 |
+
os.path.join(output_directory, "accepted_classes.csv"),
|
588 |
+
accepted_classes,
|
589 |
+
delimiter=",",
|
590 |
+
)
|
591 |
+
return [accepted_classes]
|
592 |
+
|
593 |
+
|
594 |
+
def draw_combination_on_transparent_input_image(
|
595 |
+
classes_mse, clustering, combination, transparent_input_image
|
596 |
+
):
|
597 |
+
"""
|
598 |
+
Draws a combination of classes on a transparent input image based on their mean squared error (MSE) order.
|
599 |
+
|
600 |
+
Args:
|
601 |
+
classes_mse (numpy.ndarray): Array of mean squared errors for each class.
|
602 |
+
clustering (dict): Dictionary containing the clustering information for each class.
|
603 |
+
combination (list): List of classes to be drawn on the image.
|
604 |
+
transparent_input_image (numpy.ndarray): Transparent input image.
|
605 |
+
|
606 |
+
Returns:
|
607 |
+
numpy.ndarray: Transparent input image with the specified combination of classes drawn on it.
|
608 |
+
"""
|
609 |
+
|
610 |
+
# HEAT MAP ACCORDING TO MSE ORDER
|
611 |
+
sorted_indexes = np.argsort(classes_mse)
|
612 |
+
for class_ in combination:
|
613 |
+
index = np.argwhere(sorted_indexes == class_).flatten()[0]
|
614 |
+
c = plt.cm.jet(float(index) / (len(classes_mse) - 1))
|
615 |
+
for [i, j] in clustering[class_]:
|
616 |
+
transparent_input_image[i, j] = (
|
617 |
+
c[2] * 255,
|
618 |
+
c[1] * 255,
|
619 |
+
c[0] * 255,
|
620 |
+
255,
|
621 |
+
) # BGR
|
622 |
+
return transparent_input_image
|
623 |
+
|
624 |
+
|
625 |
+
def detect_changes(
|
626 |
+
images,
|
627 |
+
output_alpha,
|
628 |
+
window_size,
|
629 |
+
clusters,
|
630 |
+
pca_dim_gray,
|
631 |
+
pca_dim_rgb,
|
632 |
+
debug=False,
|
633 |
+
output_directory=None,
|
634 |
+
):
|
635 |
+
"""
|
636 |
+
Detects changes between two images using a combination of clustering and image processing techniques.
|
637 |
+
|
638 |
+
Args:
|
639 |
+
images (tuple): A tuple containing two input images.
|
640 |
+
output_alpha (int): The alpha value for the output image.
|
641 |
+
window_size (int): The size of the sliding window used for computing change map.
|
642 |
+
clusters (int): The number of clusters used for clustering pixels.
|
643 |
+
pca_dim_gray (int): The number of dimensions to reduce the grayscale image to using PCA.
|
644 |
+
pca_dim_rgb (int): The number of dimensions to reduce the RGB image to using PCA.
|
645 |
+
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
646 |
+
output_directory (str, optional): The output directory for saving intermediate results. Defaults to None.
|
647 |
+
|
648 |
+
Returns:
|
649 |
+
numpy.ndarray: The resulting image with detected changes.
|
650 |
+
|
651 |
+
"""
|
652 |
+
start_time = time.time()
|
653 |
+
input_image, _ = images
|
654 |
+
clustering_map, mse_array = compute_change_map(
|
655 |
+
images,
|
656 |
+
window_size=window_size,
|
657 |
+
clusters=clusters,
|
658 |
+
pca_dim_gray=pca_dim_gray,
|
659 |
+
pca_dim_rgb=pca_dim_rgb,
|
660 |
+
debug=debug,
|
661 |
+
output_directory=output_directory,
|
662 |
+
)
|
663 |
+
|
664 |
+
clustering = [np.empty((0, 2), dtype=int) for _ in range(clusters)]
|
665 |
+
|
666 |
+
# Get the indices of each element in the clustering_map
|
667 |
+
indices = np.indices(clustering_map.shape).transpose(1, 2, 0).reshape(-1, 2)
|
668 |
+
flattened_map = clustering_map.flatten()
|
669 |
+
|
670 |
+
for cluster_idx in range(clusters):
|
671 |
+
clustering[cluster_idx] = indices[flattened_map == cluster_idx]
|
672 |
+
|
673 |
+
b_channel, g_channel, r_channel = cv2.split(input_image)
|
674 |
+
alpha_channel = np.ones(b_channel.shape, dtype=b_channel.dtype) * 255
|
675 |
+
alpha_channel[:, :] = output_alpha
|
676 |
+
groups = find_group_of_accepted_classes_DBSCAN(mse_array, output_directory)
|
677 |
+
|
678 |
+
for group in groups:
|
679 |
+
transparent_input_image = cv2.merge(
|
680 |
+
(b_channel, g_channel, r_channel, alpha_channel)
|
681 |
+
)
|
682 |
+
result = draw_combination_on_transparent_input_image(
|
683 |
+
mse_array, clustering, group, transparent_input_image
|
684 |
+
)
|
685 |
+
|
686 |
+
print("--- Detect Changes time - %s seconds ---" % (time.time() - start_time))
|
687 |
+
return result
|
688 |
+
|
689 |
+
|
690 |
+
def pipeline(
|
691 |
+
images,
|
692 |
+
resize_factor=1.0,
|
693 |
+
output_alpha=50,
|
694 |
+
window_size=5,
|
695 |
+
clusters=16,
|
696 |
+
pca_dim_gray=3,
|
697 |
+
pca_dim_rgb=9,
|
698 |
+
debug=False,
|
699 |
+
output_directory=None,
|
700 |
+
):
|
701 |
+
"""
|
702 |
+
Applies a pipeline of image processing steps to detect changes in a sequence of images.
|
703 |
+
|
704 |
+
Args:
|
705 |
+
images (tuple): A list of input images.
|
706 |
+
resize_factor (float, optional): The factor by which to resize the images. Defaults to 1.0.
|
707 |
+
output_alpha (int, optional): The alpha value for the output images. Defaults to 50.
|
708 |
+
window_size (int, optional): The size of the sliding window for change detection. Defaults to 5.
|
709 |
+
clusters (int, optional): The number of clusters for color quantization. Defaults to 16.
|
710 |
+
pca_dim_gray (int, optional): The number of dimensions to keep for grayscale PCA. Defaults to 3.
|
711 |
+
pca_dim_rgb (int, optional): The number of dimensions to keep for RGB PCA. Defaults to 9.
|
712 |
+
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
713 |
+
output_directory (str, optional): The directory to save the output images. Defaults to None.
|
714 |
+
|
715 |
+
Returns:
|
716 |
+
numpy.ndarray: The resulting image with detected changes.
|
717 |
+
"""
|
718 |
+
if output_directory:
|
719 |
+
os.makedirs(output_directory, exist_ok=True)
|
720 |
+
|
721 |
+
preprocessed_images = preprocess_images(
|
722 |
+
images,
|
723 |
+
resize_factor=resize_factor,
|
724 |
+
debug=debug,
|
725 |
+
output_directory=output_directory,
|
726 |
+
)
|
727 |
+
result = detect_changes(
|
728 |
+
preprocessed_images,
|
729 |
+
output_alpha=output_alpha,
|
730 |
+
window_size=window_size,
|
731 |
+
clusters=clusters,
|
732 |
+
pca_dim_gray=pca_dim_gray,
|
733 |
+
pca_dim_rgb=pca_dim_rgb,
|
734 |
+
debug=debug,
|
735 |
+
output_directory=output_directory,
|
736 |
+
)
|
737 |
+
|
738 |
+
return result
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.26.4
|
2 |
+
opencv-python-headless==4.10.0.82
|
3 |
+
scikit-learn==1.5.0
|
4 |
+
scikit-image==0.23.2
|
5 |
+
seaborn==0.13.2
|
6 |
+
gradio==4.36.0
|