Spaces:
Sleeping
Sleeping
ooferdoodles
commited on
Commit
•
242ebc0
1
Parent(s):
cb53dbd
yes
Browse files- app.py +28 -5
- changechip.py +2 -42
app.py
CHANGED
@@ -1,16 +1,26 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
|
4 |
from changechip import *
|
5 |
|
6 |
-
app_port = os.getenv("APP_PORT", "7860")
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
return pipeline(
|
11 |
(input_image, reference_image),
|
12 |
resize_factor=resize_factor,
|
13 |
output_alpha=output_alpha,
|
|
|
|
|
|
|
|
|
14 |
)
|
15 |
|
16 |
|
@@ -29,6 +39,10 @@ with gr.Blocks() as demo:
|
|
29 |
with gr.Accordion(label="Other Options", open=False):
|
30 |
resize_factor = gr.Slider(0.1, 1, 0.5, step=0.1, label="Resize Factor")
|
31 |
output_alpha = gr.Slider(0, 255, 50, step=1, label="Output Alpha")
|
|
|
|
|
|
|
|
|
32 |
|
33 |
with gr.Column(scale=2):
|
34 |
output_image = gr.Image(label="Output Image", scale=9)
|
@@ -36,7 +50,16 @@ with gr.Blocks() as demo:
|
|
36 |
|
37 |
btn.click(
|
38 |
fn=process,
|
39 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
outputs=output_image,
|
41 |
)
|
42 |
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from changechip import *
|
4 |
|
|
|
5 |
|
6 |
+
def process(
|
7 |
+
input_image,
|
8 |
+
reference_image,
|
9 |
+
resize_factor,
|
10 |
+
output_alpha,
|
11 |
+
window_size,
|
12 |
+
clusters,
|
13 |
+
pca_dim_gray,
|
14 |
+
pca_dim_rgb,
|
15 |
+
):
|
16 |
return pipeline(
|
17 |
(input_image, reference_image),
|
18 |
resize_factor=resize_factor,
|
19 |
output_alpha=output_alpha,
|
20 |
+
window_size=window_size,
|
21 |
+
clusters=clusters,
|
22 |
+
pca_dim_gray=pca_dim_gray,
|
23 |
+
pca_dim_rgb=pca_dim_rgb,
|
24 |
)
|
25 |
|
26 |
|
|
|
39 |
with gr.Accordion(label="Other Options", open=False):
|
40 |
resize_factor = gr.Slider(0.1, 1, 0.5, step=0.1, label="Resize Factor")
|
41 |
output_alpha = gr.Slider(0, 255, 50, step=1, label="Output Alpha")
|
42 |
+
window_size = gr.Slider(0, 10, 5, step=1, label="Window Size")
|
43 |
+
clusters = gr.Slider(0, 32, 16, step=1, label="Clusters")
|
44 |
+
pca_dim_gray = gr.Slider(0, 9, 3, step=1, label="PCA Dim Gray")
|
45 |
+
pca_dim_rgb = gr.Slider(0, 27, 9, step=1, label="PCA Dim RGB")
|
46 |
|
47 |
with gr.Column(scale=2):
|
48 |
output_image = gr.Image(label="Output Image", scale=9)
|
|
|
50 |
|
51 |
btn.click(
|
52 |
fn=process,
|
53 |
+
inputs=[
|
54 |
+
input_image,
|
55 |
+
reference_image,
|
56 |
+
resize_factor,
|
57 |
+
output_alpha,
|
58 |
+
window_size,
|
59 |
+
clusters,
|
60 |
+
pca_dim_gray,
|
61 |
+
pca_dim_rgb,
|
62 |
+
],
|
63 |
outputs=output_image,
|
64 |
)
|
65 |
|
changechip.py
CHANGED
@@ -16,19 +16,15 @@ import time
|
|
16 |
def resize_images(images, resize_factor=1.0):
|
17 |
"""
|
18 |
Resizes the input and reference images based on the average dimensions of the two images and a resize factor.
|
19 |
-
|
20 |
Parameters:
|
21 |
images (tuple): A tuple containing two images (input_image, reference_image). Both images should be numpy arrays.
|
22 |
resize_factor (float): A factor by which to resize the images. Default is 1.0, which means the images will be resized to the average dimensions of the two images.
|
23 |
-
|
24 |
Returns:
|
25 |
tuple: A tuple containing the resized input and reference images.
|
26 |
-
|
27 |
Example:
|
28 |
>>> input_image = cv2.imread('input.jpg')
|
29 |
>>> reference_image = cv2.imread('reference.jpg')
|
30 |
>>> resized_images = resize_images((input_image, reference_image), resize_factor=0.5)
|
31 |
-
|
32 |
"""
|
33 |
input_image, reference_image = images
|
34 |
average_width = (input_image.shape[1] + reference_image.shape[1]) * 0.5
|
@@ -49,12 +45,10 @@ def resize_images(images, resize_factor=1.0):
|
|
49 |
def homography(images, debug=False, output_directory=None):
|
50 |
"""
|
51 |
Apply homography transformation to align two images.
|
52 |
-
|
53 |
Args:
|
54 |
images (tuple): A tuple containing two images, where the first image is the input image and the second image is the reference image.
|
55 |
debug (bool, optional): If True, debug images will be generated. Defaults to False.
|
56 |
output_directory (str, optional): The directory to save the debug images. Defaults to None.
|
57 |
-
|
58 |
Returns:
|
59 |
tuple: A tuple containing the aligned input image and the reference image.
|
60 |
"""
|
@@ -130,12 +124,10 @@ def homography(images, debug=False, output_directory=None):
|
|
130 |
def histogram_matching(images, debug=False, output_directory=None):
|
131 |
"""
|
132 |
Perform histogram matching between an input image and a reference image.
|
133 |
-
|
134 |
Args:
|
135 |
images (tuple): A tuple containing the input image and the reference image.
|
136 |
debug (bool, optional): If True, save the histogram-matched image to the output directory. Defaults to False.
|
137 |
output_directory (str, optional): The directory to save the histogram-matched image. Defaults to None.
|
138 |
-
|
139 |
Returns:
|
140 |
tuple: A tuple containing the input image and the histogram-matched reference image.
|
141 |
"""
|
@@ -161,16 +153,13 @@ def preprocess_images(images, resize_factor=1.0, debug=False, output_directory=N
|
|
161 |
1. Resizes the images based on the given resize factor.
|
162 |
2. Applies homography to align the resized images.
|
163 |
3. Performs histogram matching on the aligned images.
|
164 |
-
|
165 |
Args:
|
166 |
images (tuple): A tuple containing the input image and the reference image.
|
167 |
resize_factor (float, optional): The factor by which to resize the images. Defaults to 1.0.
|
168 |
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
169 |
output_directory (str, optional): The directory to save the output images. Defaults to None.
|
170 |
-
|
171 |
Returns:
|
172 |
tuple: The preprocessed images.
|
173 |
-
|
174 |
Example:
|
175 |
>>> images = (input_image, reference_image)
|
176 |
>>> preprocess_images(images, resize_factor=0.5, debug=True, output_directory='output/')
|
@@ -193,12 +182,10 @@ def preprocess_images(images, resize_factor=1.0, debug=False, output_directory=N
|
|
193 |
def find_vector_set(descriptors, jump_size, shape):
|
194 |
"""
|
195 |
Find the vector set from the given descriptors.
|
196 |
-
|
197 |
Args:
|
198 |
descriptors (numpy.ndarray): The input descriptors.
|
199 |
jump_size (int): The jump size for sampling the descriptors.
|
200 |
shape (tuple): The shape of the descriptors.
|
201 |
-
|
202 |
Returns:
|
203 |
tuple: A tuple containing the vector set and the mean vector.
|
204 |
"""
|
@@ -219,15 +206,12 @@ def find_FVS(descriptors, EVS, mean_vec):
|
|
219 |
"""
|
220 |
Calculate the feature vector space (FVS) by performing dot product of descriptors and EVS,
|
221 |
and subtracting the mean vector from the result.
|
222 |
-
|
223 |
Args:
|
224 |
descriptors (numpy.ndarray): Array of descriptors.
|
225 |
EVS (numpy.ndarray): Eigenvalue matrix.
|
226 |
mean_vec (numpy.ndarray): Mean vector.
|
227 |
-
|
228 |
Returns:
|
229 |
numpy.ndarray: The calculated feature vector space (FVS).
|
230 |
-
|
231 |
"""
|
232 |
FVS = np.dot(descriptors, EVS)
|
233 |
FVS = FVS - mean_vec
|
@@ -240,13 +224,11 @@ def find_FVS(descriptors, EVS, mean_vec):
|
|
240 |
def descriptors_to_pca(descriptors, pca_target_dim, window_size, shape):
|
241 |
"""
|
242 |
Applies Principal Component Analysis (PCA) to a set of descriptors.
|
243 |
-
|
244 |
Args:
|
245 |
descriptors (list): List of descriptors.
|
246 |
pca_target_dim (int): Target dimensionality for PCA.
|
247 |
window_size (int): Size of the sliding window.
|
248 |
shape (tuple): Shape of the descriptors.
|
249 |
-
|
250 |
Returns:
|
251 |
list: Feature vector set after applying PCA.
|
252 |
"""
|
@@ -269,7 +251,6 @@ def get_descriptors(
|
|
269 |
):
|
270 |
"""
|
271 |
Compute descriptors for input images using sliding window technique and PCA.
|
272 |
-
|
273 |
Args:
|
274 |
images (tuple): A tuple containing the input image and reference image.
|
275 |
window_size (int): The size of the sliding window.
|
@@ -277,10 +258,8 @@ def get_descriptors(
|
|
277 |
pca_dim_rgb (int): The number of dimensions to keep for RGB PCA.
|
278 |
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
279 |
output_directory (str, optional): The directory to save debug images. Required if debug is True.
|
280 |
-
|
281 |
Returns:
|
282 |
numpy.ndarray: The computed descriptors.
|
283 |
-
|
284 |
Raises:
|
285 |
AssertionError: If debug is True but output_directory is not provided.
|
286 |
"""
|
@@ -379,15 +358,12 @@ def get_descriptors(
|
|
379 |
def k_means_clustering(FVS, components, image_shape):
|
380 |
"""
|
381 |
Perform K-means clustering on the given feature vectors.
|
382 |
-
|
383 |
Args:
|
384 |
FVS (array-like): The feature vectors to be clustered.
|
385 |
components (int): The number of clusters (components) to create.
|
386 |
image_shape (tuple): The size of the images used to reshape the change map.
|
387 |
-
|
388 |
Returns:
|
389 |
array-like: The change map obtained from the K-means clustering.
|
390 |
-
|
391 |
"""
|
392 |
kmeans = KMeans(components, verbose=0)
|
393 |
kmeans.fit(FVS)
|
@@ -399,16 +375,13 @@ def k_means_clustering(FVS, components, image_shape):
|
|
399 |
def clustering_to_mse_values(change_map, input_image, reference_image, n):
|
400 |
"""
|
401 |
Compute the normalized mean squared error (MSE) values for each cluster in a change map.
|
402 |
-
|
403 |
Args:
|
404 |
change_map (numpy.ndarray): Array representing the cluster labels for each pixel in the change map.
|
405 |
input_image (numpy.ndarray): Array representing the input image.
|
406 |
reference_image (numpy.ndarray): Array representing the reference image.
|
407 |
n (int): Number of clusters.
|
408 |
-
|
409 |
Returns:
|
410 |
list: Normalized MSE values for each cluster.
|
411 |
-
|
412 |
"""
|
413 |
|
414 |
# Ensure the images are in integer format for calculations
|
@@ -446,7 +419,6 @@ def compute_change_map(
|
|
446 |
):
|
447 |
"""
|
448 |
Compute the change map and mean squared error (MSE) array for a pair of input and reference images.
|
449 |
-
|
450 |
Args:
|
451 |
images (tuple): A tuple containing the input and reference images.
|
452 |
window_size (int): The size of the sliding window for feature extraction.
|
@@ -455,13 +427,10 @@ def compute_change_map(
|
|
455 |
pca_dim_rgb (int): The number of dimensions to reduce to for RGB images.
|
456 |
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
457 |
output_directory (str, optional): The directory to save the output files. Required if debug mode is enabled.
|
458 |
-
|
459 |
Returns:
|
460 |
tuple: A tuple containing the change map and MSE array.
|
461 |
-
|
462 |
Raises:
|
463 |
AssertionError: If debug mode is enabled but output_directory is not provided.
|
464 |
-
|
465 |
"""
|
466 |
input_image, reference_image = images
|
467 |
descriptors = get_descriptors(
|
@@ -537,12 +506,10 @@ def find_group_of_accepted_classes_DBSCAN(
|
|
537 |
):
|
538 |
"""
|
539 |
Finds the group of accepted classes using the DBSCAN algorithm.
|
540 |
-
|
541 |
Parameters:
|
542 |
- MSE_array (list): A list of mean squared error values.
|
543 |
- debug (bool): Flag indicating whether to enable debug mode or not. Default is False.
|
544 |
- output_directory (str): The directory where the output files will be saved. Default is None.
|
545 |
-
|
546 |
Returns:
|
547 |
- accepted_classes (list): A list of indices of the accepted classes.
|
548 |
"""
|
@@ -551,7 +518,7 @@ def find_group_of_accepted_classes_DBSCAN(
|
|
551 |
number_of_clusters = len(set(clustering.labels_))
|
552 |
if number_of_clusters == 1:
|
553 |
print("No significant changes are detected.")
|
554 |
-
|
555 |
# print(clustering.labels_)
|
556 |
classes = [[] for _ in range(number_of_clusters)]
|
557 |
centers = np.zeros(number_of_clusters)
|
@@ -595,13 +562,11 @@ def draw_combination_on_transparent_input_image(
|
|
595 |
):
|
596 |
"""
|
597 |
Draws a combination of classes on a transparent input image based on their mean squared error (MSE) order.
|
598 |
-
|
599 |
Args:
|
600 |
classes_mse (numpy.ndarray): Array of mean squared errors for each class.
|
601 |
clustering (dict): Dictionary containing the clustering information for each class.
|
602 |
combination (list): List of classes to be drawn on the image.
|
603 |
transparent_input_image (numpy.ndarray): Transparent input image.
|
604 |
-
|
605 |
Returns:
|
606 |
numpy.ndarray: Transparent input image with the specified combination of classes drawn on it.
|
607 |
"""
|
@@ -633,7 +598,6 @@ def detect_changes(
|
|
633 |
):
|
634 |
"""
|
635 |
Detects changes between two images using a combination of clustering and image processing techniques.
|
636 |
-
|
637 |
Args:
|
638 |
images (tuple): A tuple containing two input images.
|
639 |
output_alpha (int): The alpha value for the output image.
|
@@ -643,10 +607,8 @@ def detect_changes(
|
|
643 |
pca_dim_rgb (int): The number of dimensions to reduce the RGB image to using PCA.
|
644 |
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
645 |
output_directory (str, optional): The output directory for saving intermediate results. Defaults to None.
|
646 |
-
|
647 |
Returns:
|
648 |
numpy.ndarray: The resulting image with detected changes.
|
649 |
-
|
650 |
"""
|
651 |
start_time = time.time()
|
652 |
input_image, _ = images
|
@@ -699,7 +661,6 @@ def pipeline(
|
|
699 |
):
|
700 |
"""
|
701 |
Applies a pipeline of image processing steps to detect changes in a sequence of images.
|
702 |
-
|
703 |
Args:
|
704 |
images (tuple): A list of input images.
|
705 |
resize_factor (float, optional): The factor by which to resize the images. Defaults to 1.0.
|
@@ -710,7 +671,6 @@ def pipeline(
|
|
710 |
pca_dim_rgb (int, optional): The number of dimensions to keep for RGB PCA. Defaults to 9.
|
711 |
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
712 |
output_directory (str, optional): The directory to save the output images. Defaults to None.
|
713 |
-
|
714 |
Returns:
|
715 |
numpy.ndarray: The resulting image with detected changes.
|
716 |
"""
|
@@ -734,4 +694,4 @@ def pipeline(
|
|
734 |
output_directory=output_directory,
|
735 |
)
|
736 |
|
737 |
-
return result
|
|
|
16 |
def resize_images(images, resize_factor=1.0):
|
17 |
"""
|
18 |
Resizes the input and reference images based on the average dimensions of the two images and a resize factor.
|
|
|
19 |
Parameters:
|
20 |
images (tuple): A tuple containing two images (input_image, reference_image). Both images should be numpy arrays.
|
21 |
resize_factor (float): A factor by which to resize the images. Default is 1.0, which means the images will be resized to the average dimensions of the two images.
|
|
|
22 |
Returns:
|
23 |
tuple: A tuple containing the resized input and reference images.
|
|
|
24 |
Example:
|
25 |
>>> input_image = cv2.imread('input.jpg')
|
26 |
>>> reference_image = cv2.imread('reference.jpg')
|
27 |
>>> resized_images = resize_images((input_image, reference_image), resize_factor=0.5)
|
|
|
28 |
"""
|
29 |
input_image, reference_image = images
|
30 |
average_width = (input_image.shape[1] + reference_image.shape[1]) * 0.5
|
|
|
45 |
def homography(images, debug=False, output_directory=None):
|
46 |
"""
|
47 |
Apply homography transformation to align two images.
|
|
|
48 |
Args:
|
49 |
images (tuple): A tuple containing two images, where the first image is the input image and the second image is the reference image.
|
50 |
debug (bool, optional): If True, debug images will be generated. Defaults to False.
|
51 |
output_directory (str, optional): The directory to save the debug images. Defaults to None.
|
|
|
52 |
Returns:
|
53 |
tuple: A tuple containing the aligned input image and the reference image.
|
54 |
"""
|
|
|
124 |
def histogram_matching(images, debug=False, output_directory=None):
|
125 |
"""
|
126 |
Perform histogram matching between an input image and a reference image.
|
|
|
127 |
Args:
|
128 |
images (tuple): A tuple containing the input image and the reference image.
|
129 |
debug (bool, optional): If True, save the histogram-matched image to the output directory. Defaults to False.
|
130 |
output_directory (str, optional): The directory to save the histogram-matched image. Defaults to None.
|
|
|
131 |
Returns:
|
132 |
tuple: A tuple containing the input image and the histogram-matched reference image.
|
133 |
"""
|
|
|
153 |
1. Resizes the images based on the given resize factor.
|
154 |
2. Applies homography to align the resized images.
|
155 |
3. Performs histogram matching on the aligned images.
|
|
|
156 |
Args:
|
157 |
images (tuple): A tuple containing the input image and the reference image.
|
158 |
resize_factor (float, optional): The factor by which to resize the images. Defaults to 1.0.
|
159 |
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
160 |
output_directory (str, optional): The directory to save the output images. Defaults to None.
|
|
|
161 |
Returns:
|
162 |
tuple: The preprocessed images.
|
|
|
163 |
Example:
|
164 |
>>> images = (input_image, reference_image)
|
165 |
>>> preprocess_images(images, resize_factor=0.5, debug=True, output_directory='output/')
|
|
|
182 |
def find_vector_set(descriptors, jump_size, shape):
|
183 |
"""
|
184 |
Find the vector set from the given descriptors.
|
|
|
185 |
Args:
|
186 |
descriptors (numpy.ndarray): The input descriptors.
|
187 |
jump_size (int): The jump size for sampling the descriptors.
|
188 |
shape (tuple): The shape of the descriptors.
|
|
|
189 |
Returns:
|
190 |
tuple: A tuple containing the vector set and the mean vector.
|
191 |
"""
|
|
|
206 |
"""
|
207 |
Calculate the feature vector space (FVS) by performing dot product of descriptors and EVS,
|
208 |
and subtracting the mean vector from the result.
|
|
|
209 |
Args:
|
210 |
descriptors (numpy.ndarray): Array of descriptors.
|
211 |
EVS (numpy.ndarray): Eigenvalue matrix.
|
212 |
mean_vec (numpy.ndarray): Mean vector.
|
|
|
213 |
Returns:
|
214 |
numpy.ndarray: The calculated feature vector space (FVS).
|
|
|
215 |
"""
|
216 |
FVS = np.dot(descriptors, EVS)
|
217 |
FVS = FVS - mean_vec
|
|
|
224 |
def descriptors_to_pca(descriptors, pca_target_dim, window_size, shape):
|
225 |
"""
|
226 |
Applies Principal Component Analysis (PCA) to a set of descriptors.
|
|
|
227 |
Args:
|
228 |
descriptors (list): List of descriptors.
|
229 |
pca_target_dim (int): Target dimensionality for PCA.
|
230 |
window_size (int): Size of the sliding window.
|
231 |
shape (tuple): Shape of the descriptors.
|
|
|
232 |
Returns:
|
233 |
list: Feature vector set after applying PCA.
|
234 |
"""
|
|
|
251 |
):
|
252 |
"""
|
253 |
Compute descriptors for input images using sliding window technique and PCA.
|
|
|
254 |
Args:
|
255 |
images (tuple): A tuple containing the input image and reference image.
|
256 |
window_size (int): The size of the sliding window.
|
|
|
258 |
pca_dim_rgb (int): The number of dimensions to keep for RGB PCA.
|
259 |
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
260 |
output_directory (str, optional): The directory to save debug images. Required if debug is True.
|
|
|
261 |
Returns:
|
262 |
numpy.ndarray: The computed descriptors.
|
|
|
263 |
Raises:
|
264 |
AssertionError: If debug is True but output_directory is not provided.
|
265 |
"""
|
|
|
358 |
def k_means_clustering(FVS, components, image_shape):
|
359 |
"""
|
360 |
Perform K-means clustering on the given feature vectors.
|
|
|
361 |
Args:
|
362 |
FVS (array-like): The feature vectors to be clustered.
|
363 |
components (int): The number of clusters (components) to create.
|
364 |
image_shape (tuple): The size of the images used to reshape the change map.
|
|
|
365 |
Returns:
|
366 |
array-like: The change map obtained from the K-means clustering.
|
|
|
367 |
"""
|
368 |
kmeans = KMeans(components, verbose=0)
|
369 |
kmeans.fit(FVS)
|
|
|
375 |
def clustering_to_mse_values(change_map, input_image, reference_image, n):
|
376 |
"""
|
377 |
Compute the normalized mean squared error (MSE) values for each cluster in a change map.
|
|
|
378 |
Args:
|
379 |
change_map (numpy.ndarray): Array representing the cluster labels for each pixel in the change map.
|
380 |
input_image (numpy.ndarray): Array representing the input image.
|
381 |
reference_image (numpy.ndarray): Array representing the reference image.
|
382 |
n (int): Number of clusters.
|
|
|
383 |
Returns:
|
384 |
list: Normalized MSE values for each cluster.
|
|
|
385 |
"""
|
386 |
|
387 |
# Ensure the images are in integer format for calculations
|
|
|
419 |
):
|
420 |
"""
|
421 |
Compute the change map and mean squared error (MSE) array for a pair of input and reference images.
|
|
|
422 |
Args:
|
423 |
images (tuple): A tuple containing the input and reference images.
|
424 |
window_size (int): The size of the sliding window for feature extraction.
|
|
|
427 |
pca_dim_rgb (int): The number of dimensions to reduce to for RGB images.
|
428 |
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
429 |
output_directory (str, optional): The directory to save the output files. Required if debug mode is enabled.
|
|
|
430 |
Returns:
|
431 |
tuple: A tuple containing the change map and MSE array.
|
|
|
432 |
Raises:
|
433 |
AssertionError: If debug mode is enabled but output_directory is not provided.
|
|
|
434 |
"""
|
435 |
input_image, reference_image = images
|
436 |
descriptors = get_descriptors(
|
|
|
506 |
):
|
507 |
"""
|
508 |
Finds the group of accepted classes using the DBSCAN algorithm.
|
|
|
509 |
Parameters:
|
510 |
- MSE_array (list): A list of mean squared error values.
|
511 |
- debug (bool): Flag indicating whether to enable debug mode or not. Default is False.
|
512 |
- output_directory (str): The directory where the output files will be saved. Default is None.
|
|
|
513 |
Returns:
|
514 |
- accepted_classes (list): A list of indices of the accepted classes.
|
515 |
"""
|
|
|
518 |
number_of_clusters = len(set(clustering.labels_))
|
519 |
if number_of_clusters == 1:
|
520 |
print("No significant changes are detected.")
|
521 |
+
|
522 |
# print(clustering.labels_)
|
523 |
classes = [[] for _ in range(number_of_clusters)]
|
524 |
centers = np.zeros(number_of_clusters)
|
|
|
562 |
):
|
563 |
"""
|
564 |
Draws a combination of classes on a transparent input image based on their mean squared error (MSE) order.
|
|
|
565 |
Args:
|
566 |
classes_mse (numpy.ndarray): Array of mean squared errors for each class.
|
567 |
clustering (dict): Dictionary containing the clustering information for each class.
|
568 |
combination (list): List of classes to be drawn on the image.
|
569 |
transparent_input_image (numpy.ndarray): Transparent input image.
|
|
|
570 |
Returns:
|
571 |
numpy.ndarray: Transparent input image with the specified combination of classes drawn on it.
|
572 |
"""
|
|
|
598 |
):
|
599 |
"""
|
600 |
Detects changes between two images using a combination of clustering and image processing techniques.
|
|
|
601 |
Args:
|
602 |
images (tuple): A tuple containing two input images.
|
603 |
output_alpha (int): The alpha value for the output image.
|
|
|
607 |
pca_dim_rgb (int): The number of dimensions to reduce the RGB image to using PCA.
|
608 |
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
609 |
output_directory (str, optional): The output directory for saving intermediate results. Defaults to None.
|
|
|
610 |
Returns:
|
611 |
numpy.ndarray: The resulting image with detected changes.
|
|
|
612 |
"""
|
613 |
start_time = time.time()
|
614 |
input_image, _ = images
|
|
|
661 |
):
|
662 |
"""
|
663 |
Applies a pipeline of image processing steps to detect changes in a sequence of images.
|
|
|
664 |
Args:
|
665 |
images (tuple): A list of input images.
|
666 |
resize_factor (float, optional): The factor by which to resize the images. Defaults to 1.0.
|
|
|
671 |
pca_dim_rgb (int, optional): The number of dimensions to keep for RGB PCA. Defaults to 9.
|
672 |
debug (bool, optional): Whether to enable debug mode. Defaults to False.
|
673 |
output_directory (str, optional): The directory to save the output images. Defaults to None.
|
|
|
674 |
Returns:
|
675 |
numpy.ndarray: The resulting image with detected changes.
|
676 |
"""
|
|
|
694 |
output_directory=output_directory,
|
695 |
)
|
696 |
|
697 |
+
return result
|