from unsloth import FastLanguageModel import torch import streamlit as st from transformers import TextStreamer @st.cache_resource def load_model(): model, tokenizer = FastLanguageModel.from_pretrained( model_name = "lora_model", max_seq_length = 2048, dtype = None, load_in_4bit = True, ) FastLanguageModel.for_inference(model) return model, tokenizer model, tokenizer = load_model() st.title("Activity and Emission Prediction") st.write("Match the potential use case with the corresponding activity and emission values based on provided context.") alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" instruction = st.text_input("Instruction", "Match the potential use case with the corresponding activity and emission values based on the provided context.") input_text = st.text_area("Input", "Doğal Gaz Kullanımı, Gaz Faturası Yönetimi, Isınma Maliyetleri, Enerji Tasarrufu, Gaz Dağıtımı") # Button to trigger model generation if st.button("Generate Response"): with st.spinner("Generating response..."): # Prepare inputs for the model formatted_prompt = alpaca_prompt.format(instruction, input_text, "") inputs = tokenizer([formatted_prompt], return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=128) response_text = tokenizer.decode(outputs[0], skip_special_tokens=True) st.write("### Response") st.write(response_text)