onurnsfw commited on
Commit
8fe2ba2
1 Parent(s): a14931d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -8
app.py CHANGED
@@ -1,13 +1,49 @@
1
- # Load model directly
2
- from transformers import AutoTokenizer, AutoModelForCausalLM
3
- import streamlit as st
4
- import numpy as np
5
  import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
 
 
7
 
8
- from typing import Dict, List, Union
 
 
 
 
 
9
 
10
- from google.cloud import aiplatform
11
- from google.protobuf import json_format
12
- from google.protobuf.struct_pb2 import Value
13
 
 
 
 
1
+ from unsloth import FastLanguageModel
 
 
 
2
  import torch
3
+ import streamlit as st
4
+ from transformers import TextStreamer
5
+
6
+
7
+ @st.cache_resource
8
+ def load_model():
9
+ model, tokenizer = FastLanguageModel.from_pretrained(
10
+ model_name = "lora_model",
11
+ max_seq_length = 2048,
12
+ dtype = None,
13
+ load_in_4bit = True,
14
+ )
15
+ FastLanguageModel.for_inference(model)
16
+ return model, tokenizer
17
+
18
+ model, tokenizer = load_model()
19
+
20
+ st.title("Activity and Emission Prediction")
21
+ st.write("Match the potential use case with the corresponding activity and emission values based on provided context.")
22
+
23
+
24
+ alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
25
+
26
+ ### Instruction:
27
+ {}
28
+
29
+ ### Input:
30
+ {}
31
+
32
+ ### Response:
33
+ {}"""
34
 
35
+ instruction = st.text_input("Instruction", "Match the potential use case with the corresponding activity and emission values based on the provided context.")
36
+ input_text = st.text_area("Input", "Doğal Gaz Kullanımı, Gaz Faturası Yönetimi, Isınma Maliyetleri, Enerji Tasarrufu, Gaz Dağıtımı")
37
 
38
+ # Button to trigger model generation
39
+ if st.button("Generate Response"):
40
+ with st.spinner("Generating response..."):
41
+ # Prepare inputs for the model
42
+ formatted_prompt = alpaca_prompt.format(instruction, input_text, "")
43
+ inputs = tokenizer([formatted_prompt], return_tensors="pt").to("cuda")
44
 
45
+ outputs = model.generate(**inputs, max_new_tokens=128)
46
+ response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
47
 
48
+ st.write("### Response")
49
+ st.write(response_text)