File size: 20,071 Bytes
f440398 1ec8ae9 f440398 cb959e4 1ec8ae9 cb959e4 1ec8ae9 cb959e4 f440398 236be87 f440398 489d9e7 f440398 489d9e7 f440398 489d9e7 f440398 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import streamlit as st
import numpy as np
from numpy import ndarray
import pandas as pd
import torch as T
from torch import Tensor, device
from transformers import AutoModelForMaskedLM, AutoTokenizer, AutoConfig, AutoModel
from nltk.corpus import stopwords
from nltk.stem.porter import *
import json
import nltk
from nltk import FreqDist
from nltk.corpus import gutenberg
import urllib.request
from string import punctuation
from math import log,exp,sqrt
import random
from time import sleep
nltk.download('stopwords')
nltk.download('gutenberg')
cos = T.nn.CosineSimilarity(dim=0)
urllib.request.urlretrieve("https://github.com/ondovb/nCloze/raw/1b57ab719c367c070aeba8a53e71a536ce105091/dict-info.txt", 'dict-info.txt')
sleep(1)
urllib.request.urlretrieve("https://github.com/ondovb/nCloze/raw/1b57ab719c367c070aeba8a53e71a536ce105091/dict-unix.txt", 'dict-unix.txt')
sleep(1)
urllib.request.urlretrieve("https://github.com/ondovb/nCloze/raw/1b57ab719c367c070aeba8a53e71a536ce105091/profanity.json", 'profanity.json')
#gdown.download('https://drive.google.com/uc?id=16j6oQbqIUfdY1kMFOonXVDdG7A0C6CXD&confirm=t',use_cookies=True)
#gdown.download(id='13-3DyP4Df1GzrdQ_W4fLhPYAA1Gscg1j',use_cookies=True)
#gdown.download(id='180X6ztER2lKVP_dKinSJNE0XRtmnixAM',use_cookies=True)
CONTEXTUAL_EMBEDDING_LAYERS = [12]
EXTEND_SUBWORDS=True
MAX_SUBWORDS=1
DEBUG_OUTPUT=True
DISTRACTORS_FROM_TEXT=False
MIN_SENT_WORDS = 7
# Frequencies are used to decide if a distractor candidate might be a subword
stemmer = PorterStemmer()
freq = FreqDist(i.lower() for i in gutenberg.words())
print(freq.most_common()[:5])
words_unix = set(line.strip() for line in open('dict-unix.txt'))
words_info = set(line.strip() for line in open('dict-info.txt'))
words_small = words_unix.intersection(words_info)
words_large = words_unix.union(words_info)
f = open('profanity.json')
profanity = json.load(f)
import stanza
nlp = stanza.Pipeline(lang='en', processors='tokenize')#, model_dir='/data/ondovbd/stanza_resources')
nltk.download('punkt')
nltk_sent_toker = nltk.data.load('tokenizers/punkt/english.pickle')
def is_word(str):
'''Check if word exists in dictionary'''
splt = str.lower().split("'")
if len(splt) > 2:
return False
elif len(splt) == 2:
return is_word(splt[0]) and (splt[1] in ['t','nt','s','ll'])
elif '-' in str:
for word in str.split('-'):
if not is_word(word):
return False
return True
else:
return str.lower() in words_unix or str.lower() in words_info
def get_emb(snt_toks, tgt_toks, layers=None):
'''Embeds a group of subword tokens in place of a mask, using the entire
sentence for context. Returns the average of the target token embeddings,
which are summed over the hidden layers.
snt_toks: the tokenized sentence, including the mask token
tgt_toks: the tokens (subwords) to replace the mask token
layers (optional): which hidden layers to sum (list of indices)'''
mask_idx = snt_toks.index(toker.mask_token_id)
snt_toks = snt_toks.copy()
while mask_idx + len(tgt_toks)-1 >= 512:
# Shift text by 100 words
snt_toks = snt_toks[100:]
mask_idx -= 100
snt_toks[mask_idx:mask_idx+1] = tgt_toks
snt_toks = snt_toks[:512]
with T.no_grad():
if T.cuda.is_available():
T.tensor([snt_toks]).cuda()
T.tensor([[1]*len(snt_toks)]).cuda()
output = model(T.tensor([snt_toks]), T.tensor([[1]*len(snt_toks)]), output_hidden_states=True)
layers = CONTEXTUAL_EMBEDDING_LAYERS if layers is None else layers
output = T.stack([output.hidden_states[i] for i in layers]).sum(0).squeeze()
# Only select the tokens that constitute the requested word
return output[mask_idx:mask_idx+len(tgt_toks)].mean(dim=0)
def energy(ctx, scaled_dists, scaled_sims, choices, words, ans):
#Calculate and add cosine similarity scores
'''Cost function to help choose best distractors'''
#e = [embs[i] for i in choices] #+ [sem_emb_ans]
#w = [words[i] for i in choices] #+ [ans]
hm_sim = 0
e_ctx = 0
for i in choices:
hm_sim += 1./scaled_sims[i]
e_ctx += ctx[i]
e_sim = float(len(choices))/hm_sim
hm_emb = 0
count = 0
c = choices + [len(ctx)]
for i in range(len(c)):
for j in range(i):
d = scaled_dists['%s-%s'%(max(c[i],c[j]), min(c[i], c[j]))]
#print(c[i], c[j], d)
hm_emb += 1./d
count += 1
e_emb = float(count)/hm_emb
return float(e_emb), e_ctx, float(e_sim)
def anneal(probs_sent_context, probs_para_context, embs, emb_ans, words, k, ans):
'''find k distractor indices that are optimally high probability and distant
in embedding space'''
# probs_sent_context = T.as_tensor(probs_sent_context) / sum(probs_sent_context)
m = len(probs_sent_context)
# probs_para_context = T.as_tensor(probs_para_context) / sum(probs_para_context)
its = 1000
n = len(probs_para_context)
choices = list(range(k))
dists = {}
embsa = embs + [emb_ans]
for i in range(len(embsa)):
for j in range(i):
dists['%s-%s'%(i,j)] = 1-cos(embsa[i], embsa[j]) # cosine "distance"
#print(words[i], words[j], 1-cos(embs[i], embs[j]))
dist_min = T.min(T.tensor(list(dists.values())))
dist_max = T.max(T.tensor(list(dists.values())))
for key, dist in dists.items():
dists[key] = (dist - dist_min)/(dist_max-dist_min)
sims = T.tensor([cos(emb_ans, emb) for emb in embs])
scaled_sims = (sims - T.min(sims))/(T.max(sims)-T.min(sims))
ctx = T.tensor(probs_sent_context).log()-ALPHA*T.tensor(probs_para_context).log()
ctx = (ctx-T.min(ctx))/(T.max(ctx)-T.min(ctx))
e_emb, e_ctx, e_sim = energy(ctx, dists, scaled_sims, choices, words, ans)
e = e_ctx + BETA * e_emb
#e = SIM_ANNEAL_EMB_WEIGHT * e_emb + e_prob
for i in range(its):
t = 1.-(i)/its
mut_idx = random.randrange(k) # which choice to mutate
orig = choices[mut_idx]
new = orig
while (new in choices): # mutate choice until not in current list
new = random.randrange(m)
choices[mut_idx] = new
e_emb, e_ctx, e_sim = energy(ctx, dists, scaled_sims, choices, words, ans)
e_new = e_ctx + BETA * e_emb
delta = e_new - e
exponent = delta/t
if exponent < -50:
exponent = -50 # avoid underflow
if delta > 0 or exp(exponent) > random.random():
e = e_new # accept new state
else:
choices[mut_idx] = orig
if DEBUG_OUTPUT:
print([words[j] for j in choices] + [ans], "e: %f"%(e))
return choices
def get_softmax_logits(toks, n_masks = 1, sub_ids = []):
# Tokenize text - Keep length of inpts at or below 512 (including answer token length artifically added at end)
msk_idx = toks.index(toker.mask_token_id)
toks = toks.copy()
toks[msk_idx:msk_idx+1] = [toker.mask_token_id] * n_masks + sub_ids
# If the masked_token is over 512 (excluding answer token length artifically added at end) tokens away
while msk_idx >= 512:
# Shift text by 100 words
toks = toks[100:]
msk_idx -= 100
toks = toks[:512]
# Find the predicted words for the fill-in-the-blank mask term based on sentence-context alone
with T.no_grad():
t=T.tensor([toks])
m=T.tensor([[1]*len(toks)])
if T.cuda.is_available():
t.cuda()
m.cuda()
output = model(t, m)
sm = T.softmax(output.logits[0, msk_idx:msk_idx+n_masks, :], dim=1)
return sm
e=1e-10
def candidates(text, answer):
'''Create list of unique distractors that does not include the actual answer'''
if DEBUG_OUTPUT:
print(text)
# Get only sentence with blanked text to tokenize
doc = nlp(text)
#sents = [sentence.text for sentence in doc.sentences]
sents = nltk_sent_toker.tokenize(text)
msk_snt_idx = [i for i in range(len(sents)) if toker.mask_token in sents[i]][0]
just_masked_sentence = sents[msk_snt_idx]
prv_snts = sents[:msk_snt_idx]
nxt_snts = sents[msk_snt_idx+1:]
if len(just_masked_sentence.split(' ')) < MIN_SENT_WORDS and len(prv_snts):
just_masked_sentence = ' '.join([prv_snts.pop(), just_masked_sentence])
while len(just_masked_sentence.split(' ')) < MIN_SENT_WORDS and (len(prv_snts) or len(nxt_snts)):
if T.rand(1) < 0.5 and len(prv_snts):
just_masked_sentence = ' '.join([prv_snts.pop(), just_masked_sentence])
elif len(nxt_snts):
just_masked_sentence = ' '.join([just_masked_sentence, nxt_snts.pop(0)])
ctx = just_masked_sentence
while len(ctx.split(' ')) < 3 * len(just_masked_sentence.split(' ')) and (len(prv_snts) or len(nxt_snts)):
if len(prv_snts):
ctx = ' '.join([prv_snts.pop(), ctx])
if len(nxt_snts):
ctx = ' '.join([ctx, nxt_snts.pop(0)])
# just_masked_sentence = ' '.join([just_masked_sentence.replace('<mask>', 'banana'),
# just_masked_sentence.replace('<mask>', 'banana'),
## just_masked_sentence,
# just_masked_sentence.replace('<mask>', 'banana'),
# just_masked_sentence.replace('<mask>', 'banana')])
#just_masked_sentence = ' '.join([just_masked_sentence, just_masked_sentence, just_masked_sentence, just_masked_sentence, just_masked_sentence])
tiled = just_masked_sentence
while len(tiled) < len(text):
tiled += ' ' + just_masked_sentence
just_masked_sentence = tiled
if DEBUG_OUTPUT:
print(ctx)
print(text)
print(just_masked_sentence)
toks_para = toker.encode(text)
toks_sent = toker.encode(just_masked_sentence)
# Get softmaxed logits from sentence alone and full-text
# sent_sm, sent_pos, sent_ids = get_span_logits(just_masked_sentence, answer)
# para_sm, para_pos, para_ids = get_span_logits(text, answer)
sent_sms_all = []
para_sms_all = []
para_sms_right = []
for i in range(MAX_SUBWORDS):
para_sms = get_softmax_logits(toks_para, i + 1)
para_sms_all.append(para_sms)
sent_sms = get_softmax_logits(toks_sent, i + 1)
sent_sms_all.append(sent_sms)
para_sms_right.append(T.exp((sent_sms[i].log()+para_sms[i].log())/2) * (suffix_mask_inv if i == 0 else suffix_mask))
# Create 2 lists: (1) notes highest probability for each token across n-mask lists if token is suffix and (2) notes number of mask terms to add
para_sm_best, para_pos_best = T.max(T.vstack(para_sms_right), 0)
distractors = []
stems = []
embs = []
sent_probs = []
para_probs = []
ans_stem = stemmer.stem(answer.lower())
emb_ans = get_emb(toks_para, toker(answer)['input_ids'][1:-1])
para_words = text.lower().split(' ')
blank_word_idx = [idx for idx, word in enumerate(text.split(' ')) if toker.mask_token in word][0] # Need to remove punctuation
if (blank_word_idx - 1) < 0:
prev_word = 'beforeanytext'
else:
prev_word = para_words[blank_word_idx-1]
if (blank_word_idx + 1) >= len(para_words):
next_word = 'afteralltext'
else:
next_word = para_words[blank_word_idx+1]
# Need to check if the token is outside of the tokenizer based on predictions being made at all
if len(para_sms_all[0]) > 0:
top_ctx = T.topk((sent_sms_all[0][0]*word_mask+e).log() - ALPHA * (para_sms_all[0][0]*word_mask+e).log(), len(para_sms_all[0][0]), dim=0)
para_top_ids = top_ctx.indices.tolist()
para_top_probs = top_ctx.values.tolist()
for i, id in enumerate(para_top_ids):
sub_ids = [int(id)] # cumulative list of subword token ids
dec = toker.decode(sub_ids).strip()
if DEBUG_OUTPUT:
print('Trying:', dec)
#print(para_pos[id])
#if para_pos_best[id] > 0:
# continue
if dec.isupper() != answer.isupper():
continue
if EXTEND_SUBWORDS and para_pos_best[id] > 0:
if DEBUG_OUTPUT:
print("Extending %s with %d masks..."%(dec, para_pos_best[id]))
ext_ids, _ = extend(toks_sent, toks_para, [id], para_pos_best[id], para_words)
sub_ids = ext_ids + sub_ids
dec_ext = toker.decode(sub_ids).strip()
if DEBUG_OUTPUT:
print("Extended %s to %s"%(dec, dec_ext))
if is_word(dec_ext) or (dec_ext != '' and dec_ext in para_words):
dec = dec_ext # choose new word
else:
sub_ids = [int(id)] # reset
if len(toker.decode(sub_ids).lower().strip()) < 2:
continue
if dec[0].isupper() != answer[0].isupper():
continue
# Only add distractor if it does not contain punctuation
#if any(p in dec for p in punctuation):
# pass
#continue
if dec.lower() in profanity:
continue
# make sure is a word, either in dict or somewhere else in text
if not is_word(dec) and dec.lower() not in para_words:
continue
# make sure is not the same as an adjacent word
if dec.lower() == prev_word or dec.lower() == next_word:
continue
# Don't add the distractor if stem matches another
stem = stemmer.stem(dec).lower()
if stem in stems or stem == ans_stem:
continue
# Only add distractor if it does not contain a number
if any(char.isdigit() for char in toker.decode([id])):
continue
# Only add distractor if the distractor exists in the text already
if DISTRACTORS_FROM_TEXT and dec.lower() not in para_words:
continue
#if answer[0].isupper():
# dec = dec.capitalize()
# PASSED ALL TESTS; finally add distractor and computations
distractors.append(dec)
stems.append(stem)
sent_logprob = 0
para_logprob = 0
nsubs = len(sub_ids)
for j in range(nsubs):
sub_id = sub_ids[j]
sent_logprob_j = log(sent_sms_all[nsubs-1][j][sub_id])
para_logprob_j = log(para_sms_all[nsubs-1][j][sub_id])
#if j == 0 or sent_logprob_j > sent_logprob:
# sent_logprob = sent_logprob_j
#if j == 0 or para_logprob_j > para_logprob:
# para_logprob = para_logprob_j
sent_logprob += sent_logprob_j
para_logprob += para_logprob_j
sent_logprob /= nsubs
para_logprob /= nsubs
if DEBUG_OUTPUT:
print("%s (p_sent=%f, p_para=%f)"%(dec,sent_logprob,para_logprob))
sent_probs.append(exp(sent_logprob))
para_probs.append(exp(para_logprob))
# sent_probs.append(sent_sms_all[nsubs-1][nsubs-1][sub_id])
# para_probs.append(para_sms_all[nsubs-1][nsubs-1][sub_id])
embs.append(get_emb(toks_para, sub_ids))
if len(distractors) >= K:
break
if DEBUG_OUTPUT:
print('Corresponding Text: ', text)
print('Correct Answer: ', answer)
print('Distractors created before annealing: ', distractors)
#indices = anneal(sent_probs, para_probs, embs, emb_ans, number_of_distractors, distractors, answer)
#distractors = [distractors[i] for i in indices]
#distractors += [''] * (number_of_distractors - len(distractors))
return sent_probs, para_probs, embs, emb_ans, distractors
def create_distractors(text, answer):
sent_probs, para_probs, embs, emb_ans, distractors = candidates(text, answer)
#print(distractors)
indices = anneal(sent_probs, para_probs, embs, emb_ans, distractors, 3, answer)
return [distractors[x] for x in indices]
st.title("nCloze")
st.subheader("Create a multiple-choice cloze test from a passage")
st.markdown("Note: this is a free, CPU-only space and will be slow. For better performance, clone the space with a GPU-enabled environment.")
def blank(tok):
if tok == 'a(n)':
strp = tok
else:
strp = tok.strip(punctuation)
print(strp, tok.replace(strp, toker.mask_token))
return strp, tok.replace(strp, toker.mask_token)
test = """In contrast to necrosis, which is a form of traumatic cell death that results from acute cellular injury, apoptosis is a highly regulated and controlled process that confers advantages during an organism's life cycle. For example, the separation of fingers and toes in a developing human embryo occurs because cells between the digits undergo apoptosis. Unlike necrosis, apoptosis produces cell fragments called apoptotic bodies that phagocytes are able to engulf and remove before the contents of the cell can spill out onto surrounding cells and cause damage to them."""
st.header("Basic options")
SPACING = int(st.text_input('Blank spacing', value="7"))
OFFSET = int(st.text_input('First word to blank (0 to use spacing)', value="4"))
st.header("Advanced options")
ALPHA = float(st.text_input('Incorrectness weight', value="0.75"))
BETA = float(st.text_input('Distinctness weight', value="0.25"))
MODEL_TYPE = st.text_input('Masked Language Model (from HuggingFace)', value="roberta-large")
K = 16
model = AutoModelForMaskedLM.from_pretrained(MODEL_TYPE)#, cache_dir=CACHE_DIR)
if T.cuda.is_available():
model.cuda()
toker = AutoTokenizer.from_pretrained(MODEL_TYPE, add_prefix_space=True)
sorted_toker_vocab_dict = sorted(toker.vocab.items(), key=lambda x:x[1])
if toker.mask_token == '[MASK]': # BERT style
suffix_mask = T.FloatTensor([1 if (('##' == x[0][:2]) and (re.match("^[A-Za-z0-9']*$", x[0]) is not None)) else 0 for x in sorted_toker_vocab_dict]) # 1 means is-suffix and 0 mean not-suffix
else: # RoBERTa style
suffix_mask = T.FloatTensor([1 if (('Ġ' != x[0][0]) and (re.match("^[A-Za-z0-9']*$", x[0]) is not None)) else 0 for x in sorted_toker_vocab_dict]) # 1 means is-suffix and 0 mean not-suffix
suffix_mask_inv = suffix_mask * -1 + 1
word_mask = suffix_mask_inv*T.FloatTensor([1 if is_word(x[0][1:]) and x[0][1:].lower() not in profanity else 0 for x in sorted_toker_vocab_dict])
if T.cuda.is_available():
suffix_mask=suffix_mask.cuda()
suffix_mask_inv=suffix_mask_inv.cuda()
word_mask = word_mask.cuda()
st.subheader("Passage")
st.text_area('Passage to create a cloze test from:',value=test,key="text", max_chars=1024, height=275)
def generate():
ws = st.session_state.text.split()
wb = st.session_state.text.split()
qs = []
i = OFFSET - 1 if OFFSET > 0 else SPACING - 1
j = 0
while i < len(ws):
a, b = blank(ws[i])
while b == '' and i < len(ws)-1:
i += 1
a, b = blank(ws[i])
if b != '':
w = ws[i]
ws[i] = b
wb[i] = b
while j<i:
yield(' ' + ws[j])
j += 1
masked = ' '.join(ws)
#st.write(masked)
ds = create_distractors(masked, a)
print(ds, a)
q = ds+[a+'\*']
random.shuffle(q)
yield(b.replace(toker.mask_token,' **['+', '.join(q)+']**'))
j+=1
qs.append(ds)
ws[i] = w
i += SPACING
while j<len(ws):
yield(' ' + ws[j])
j += 1
# Load model and run inference
if st.button("Generate"):
st.write_stream(generate())
|