from dotenv import load_dotenv from strictjson import strict_json_async from prompts import AGENT_PROMPT, RAG_SYS_PROMPT, RAG_USER_PROMPT from sarvam import speaker, translator load_dotenv() async def llm(system_prompt: str, user_prompt: str) -> str: import os from groq import AsyncGroq client = AsyncGroq(api_key=os.getenv("GROQ_API_KEY")) messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}, ] chat_completion = await client.chat.completions.create( messages=messages, model="llama3-70b-8192", temperature=0.3, max_tokens=360, top_p=1, stop=None, stream=False, ) return chat_completion.choices[0].message.content async def call_agent(user_prompt, grade, subject): system_prompt = AGENT_PROMPT.format(grade, subject) result = await strict_json_async( system_prompt=system_prompt, user_prompt=user_prompt, output_format={ "function": 'Type of function to call, type: Enum["retriever", "translator", "speaker", "none"]', "keywords": "Array of keywords, type: List[str]", "src_lang": "Identify the language that the user query is in, type: str", "dest_lang": """Identify the target language from the user query if the function is either "translator" or "speaker". If language is not found, return "none", type: Enum["hindi", "bengali", "kannada", "malayalam", "marathi", "odia", "punjabi", "tamil", "telugu", "english", "gujarati", "none"]""", "source": "Identify the sentence that the user wants to translate or speak. Retu 'none', type: Optional[str]", "response": "Your response, type: Optional[str]", }, llm=llm, ) return result async def function_caller(user_prompt, collection, client): grade, subject, chapter = collection.split("_") result = await call_agent(user_prompt, grade, subject) function = result["function"].lower() if function == "none": return result["response"] elif function == "retriever": data = client.search(collection, user_prompt) data = [i.document for i in data] system_prompt = RAG_SYS_PROMPT.format(subject, grade) user_prompt = RAG_USER_PROMPT.format(data, user_prompt) response = await llm(system_prompt, user_prompt) return response elif function == "translator": return await translator(result["response"], result["src_lang"], result["dest_lang"]) elif function == "speaker": return await speaker(result["response"], result["dest_lang"]) # return base64.b64encode(b"audio data").decode()